IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v21y2024i1d10.1007_s10287-023-00491-x.html
   My bibliography  Save this article

Addressing the economic and demographic complexity via a neural network approach: risk measures for reverse mortgages

Author

Listed:
  • E. Lorenzo

    (University of Naples Federico II)

  • G. Piscopo

    (University of Naples Federico II)

  • M. Sibillo

    (University of Salerno)

Abstract

The study deals with the application of a neural network algorithm for fronting and solving problems connected with the riskiness in financial contexts. We consider a specific contract whose characteristics make it a paradigm of a complex financial transaction, that is the Reverse Mortgage. Reverse Mortgages allow elderly homeowners to get a credit line that will be repaid through the selling of their homes after their deaths, letting them continue to live there. In accordance with regulatory guidelines that direct prudent assessments of future losses to ensure solvency, within the perspective of the risk assessment of Reverse Mortgage portfolios, the paper deals with the estimation of the Conditional Value at Risk. Since the riskiness is affected by nonlinear relationships between risk factors, the Conditional Value at Risk is estimated using Neural Networks, as they are a suitable method for fitting nonlinear functions. The Conditional Value at Risk estimated by means of Neural Network approach is compared with the traditional Value at Risk in a numerical application.

Suggested Citation

  • E. Lorenzo & G. Piscopo & M. Sibillo, 2024. "Addressing the economic and demographic complexity via a neural network approach: risk measures for reverse mortgages," Computational Management Science, Springer, vol. 21(1), pages 1-22, June.
  • Handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-023-00491-x
    DOI: 10.1007/s10287-023-00491-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00491-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00491-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Doyle & Chris Groendyke, 2018. "Using Neural Networks to Price and Hedge Variable Annuity Guarantees," Risks, MDPI, vol. 7(1), pages 1-19, December.
    2. Georgios Sermpinis & Jason Laws & Christian L. Dunis, 2015. "Modelling commodity value at risk with Psi Sigma neural networks using open-high-low-close data," The European Journal of Finance, Taylor & Francis Journals, vol. 21(4), pages 316-336, March.
    3. Raul-Tomas Mora-Garcia & Maria-Francisca Cespedes-Lopez & V. Raul Perez-Sanchez, 2022. "Housing Price Prediction Using Machine Learning Algorithms in COVID-19 Times," Land, MDPI, vol. 11(11), pages 1-32, November.
    4. Huseyin Ince, 2006. "Non-Parametric Regression Methods," Computational Management Science, Springer, vol. 3(2), pages 161-174, April.
    5. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    6. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    7. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    8. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    9. Cho Daniel & Hanewald Katja & Sherris Michael, 2015. "Risk Analysis for Reverse Mortgages with Different Payout Designs," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 9(1), pages 77-105, January.
    10. Antonio Heras & Ignacio Moreno & José L. Vilar-Zanón, 2018. "An application of two-stage quantile regression to insurance ratemaking," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(9), pages 753-769, October.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2020. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 8(1), pages 1-79, February.
    13. de la Fuente, Iván & Navarro, Eliseo & Serna, Gregorio, 2023. "Proposal for calculating regulatory capital requirements for reverse mortgages," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    14. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    15. Arian, Hamid & Moghimi, Mehrdad & Tabatabaei, Ehsan & Zamani, Shiva, 2022. "Encoded Value-at-Risk: A machine learning approach for portfolio risk measurement," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 500-525.
    16. Liang Wang & Emiliano Valdez & John Piggott, 2008. "Securitization of Longevity Risk in Reverse Mortgages," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(4), pages 345-371.
    17. Andreas Krause, 2003. "Exploring the Limitations of Value at Risk: How Good Is It in Practice?," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 4(2), pages 19-28, January.
    18. Alessandro G. Laporta & Susanna Levantesi & Lea Petrella, 2021. "Quantile Regression Neural Network for Quantile Claim Amount Estimation," Springer Books, in: Marco Corazza & Manfred Gilli & Cira Perna & Claudio Pizzi & Marilena Sibillo (ed.), Mathematical and Statistical Methods for Actuarial Sciences and Finance, pages 299-305, Springer.
    19. Badescu, Alexandru & Quaye, Enoch & Tunaru, Radu, 2022. "On non-negative equity guarantee calculations with macroeconomic variables related to house prices," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 119-138.
    20. Patrick Cheridito & John Ery & Mario V. Wüthrich, 2020. "Assessing Asset-Liability Risk with Neural Networks," Risks, MDPI, vol. 8(1), pages 1-17, February.
    21. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    22. Lee, Yung-Tsung & Kung, Ko-Lun & Liu, I-Chien, 2018. "Profitability and risk profile of reverse mortgages: A cross-system and cross-plan comparison," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 255-266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinghan Zhang & Henry Xie & Xinhao Zhang & Kunpeng Liu, 2024. "Enhancing Risk Assessment in Transformers with Loss-at-Risk Functions," Papers 2411.02558, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
    2. Georg Keilbar & Weining Wang, 2022. "Modelling systemic risk using neural network quantile regression," Empirical Economics, Springer, vol. 62(1), pages 93-118, January.
    3. Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024. "Panel data nowcasting: The case of price–earnings ratios," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
    4. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    5. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    6. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    7. Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
    8. Linying Lv, 2024. "The Value of Information from Sell-side Analysts," Papers 2411.13813, arXiv.org, revised Dec 2024.
    9. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    10. Back, Kerry & Crotty, Kevin & Kazempour, Seyed Mohammad, 2022. "Validity, tightness, and forecasting power of risk premium bounds," Journal of Financial Economics, Elsevier, vol. 144(3), pages 732-760.
    11. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2020. "Neural Network Models for Empirical Finance," JRFM, MDPI, vol. 13(11), pages 1-22, October.
    12. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
    13. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    14. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    15. Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
    16. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    17. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    18. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
    19. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
    20. Anubha Goel & Puneet Pasricha & Juho Kanniainen, 2024. "Time-Series Foundation Model for Value-at-Risk Forecasting," Papers 2410.11773, arXiv.org, revised Dec 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-023-00491-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.