IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v20y2023i1d10.1007_s10287-023-00463-1.html
   My bibliography  Save this article

A fast Monte Carlo scheme for additive processes and option pricing

Author

Listed:
  • Michele Azzone

    (Politecnico di Milano)

  • Roberto Baviera

    (Politecnico di Milano)

Abstract

In this paper, we present a very fast Monte Carlo scheme for additive processes: the computational time is of the same order of magnitude of standard algorithms for simulating Brownian motions. We analyze in detail numerical error sources and propose a technique that reduces the two major sources of error. We also compare our results with a benchmark method: the jump simulation with Gaussian approximation. We show an application to additive normal tempered stable processes, a class of additive processes that calibrates “exactly” the implied volatility surface. Numerical results are relevant. This fast algorithm is also an accurate tool for pricing path-dependent discretely-monitoring options with errors of one basis point or below.

Suggested Citation

  • Michele Azzone & Roberto Baviera, 2023. "A fast Monte Carlo scheme for additive processes and option pricing," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
  • Handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00463-1
    DOI: 10.1007/s10287-023-00463-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00463-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00463-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Glasserman & Zongjian Liu, 2010. "Sensitivity Estimates from Characteristic Functions," Operations Research, INFORMS, vol. 58(6), pages 1611-1623, December.
    2. Dilip B. Madan & King Wang, 2020. "Additive Processes with Bilateral Gamma Marginals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(3), pages 171-188, May.
    3. Michele Azzone & Roberto Baviera, 2022. "Additive normal tempered stable processes for equity derivatives and power-law scaling," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 501-518, March.
    4. Peter Carr & Lorenzo Torricelli, 2021. "Additive logistic processes in option pricing," Finance and Stochastics, Springer, vol. 25(4), pages 689-724, October.
    5. repec:dau:papers:123456789/1380 is not listed on IDEAS
    6. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    7. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2019. "Hilbert transform, spectral filters and option pricing," Annals of Operations Research, Springer, vol. 282(1), pages 273-298, November.
    8. Marsaglia, George & Tsang, Wai Wan, 2000. "The Ziggurat Method for Generating Random Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i08).
    9. Laura Ballotta & Ioannis Kyriakou, 2014. "Monte Carlo Simulation of the CGMY Process and Option Pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1095-1121, December.
    10. Fabio Baschetti & Giacomo Bormetti & Silvia Romagnoli & Pietro Rossi, 2022. "The SINC way: a fast and accurate approach to Fourier pricing," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 427-446, March.
    11. Michele Azzone & Roberto Baviera, 2019. "Additive normal tempered stable processes for equity derivatives and power law scaling," Papers 1909.07139, arXiv.org, revised Jan 2022.
    12. Helyette Geman & C. Peter M. Dilip Y. Marc, 2007. "Self decomposability and option pricing," Post-Print halshs-00144193, HAL.
    13. Ernst Eberlein & Dilip Madan, 2009. "Sato processes and the valuation of structured products," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 27-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Azzone & Roberto Baviera, 2021. "A fast Monte Carlo scheme for additive processes and option pricing," Papers 2112.08291, arXiv.org, revised Jul 2023.
    2. Michele Azzone & Roberto Baviera, 2023. "Is (independent) subordination relevant in option pricing?," Papers 2307.08628, arXiv.org, revised Oct 2023.
    3. Patrizia Semeraro, 2022. "Multivariate tempered stable additive subordination for financial models," Mathematics and Financial Economics, Springer, volume 16, number 3, October.
    4. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    5. Patrizia Semeraro, 2021. "Multivariate tempered stable additive subordination for financial models," Papers 2105.00844, arXiv.org, revised Sep 2021.
    6. Trabs, Mathias, 2011. "Calibration of self-decomposable Lévy models," SFB 649 Discussion Papers 2011-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    8. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    9. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    10. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Simulation of a L\'evy process, its extremum, and hitting time of the extremum via characteristic functions," Papers 2312.03929, arXiv.org.
    11. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    12. Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.
    13. repec:hum:wpaper:sfb649dp2011-073 is not listed on IDEAS
    14. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    15. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    16. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    17. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    18. repec:jss:jstsof:12:i07 is not listed on IDEAS
    19. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    20. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
    21. Johannes Siven & Rolf Poulsen, 2009. "Auto-static for the people: risk-minimizing hedges of barrier options," Review of Derivatives Research, Springer, vol. 12(3), pages 193-211, October.
    22. Finlay, Richard & Seneta, Eugene, 2012. "A Generalized Hyperbolic model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2164-2169.

    More about this item

    Keywords

    Additive process; Simulation; Fast Fourier transform; Lewis formula;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00463-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.