IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.08291.html
   My bibliography  Save this paper

A fast Monte Carlo scheme for additive processes and option pricing

Author

Listed:
  • Michele Azzone
  • Roberto Baviera

Abstract

In this paper, we present a very fast Monte Carlo scheme for additive processes: the computational time is of the same order of magnitude of standard algorithms for Brownian motions. We analyze in detail numerical error sources and propose a technique that reduces the two major sources of error. We also compare our results with a benchmark method: the jump simulation with Gaussian approximation. We show an application to additive normal tempered stable processes, a class of additive processes that calibrates ``exactly" the implied volatility surface.Numerical results are relevant. This fast algorithm is also an accurate tool for pricing path-dependent discretely-monitoring options with errors of one bp or below.

Suggested Citation

  • Michele Azzone & Roberto Baviera, 2021. "A fast Monte Carlo scheme for additive processes and option pricing," Papers 2112.08291, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2112.08291
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.08291
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Glasserman & Zongjian Liu, 2010. "Sensitivity Estimates from Characteristic Functions," Operations Research, INFORMS, vol. 58(6), pages 1611-1623, December.
    2. Peter Carr & Lorenzo Torricelli, 2021. "Additive logistic processes in option pricing," Finance and Stochastics, Springer, vol. 25(4), pages 689-724, October.
    3. Marsaglia, George & Tsang, Wai Wan, 2000. "The Ziggurat Method for Generating Random Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i08).
    4. Laura Ballotta & Ioannis Kyriakou, 2014. "Monte Carlo Simulation of the CGMY Process and Option Pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1095-1121, December.
    5. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    6. Roger W. Lee, 2001. "Implied And Local Volatilities Under Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 45-89.
    7. Ernst Eberlein & Dilip Madan, 2009. "Sato processes and the valuation of structured products," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 27-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Azzone & Roberto Baviera, 2023. "A fast Monte Carlo scheme for additive processes and option pricing," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    2. Patrizia Semeraro, 2022. "Multivariate tempered stable additive subordination for financial models," Mathematics and Financial Economics, Springer, volume 16, number 3, February.
    3. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    4. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    5. Patrizia Semeraro, 2021. "Multivariate tempered stable additive subordination for financial models," Papers 2105.00844, arXiv.org, revised Sep 2021.
    6. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    7. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Simulation of a L\'evy process, its extremum, and hitting time of the extremum via characteristic functions," Papers 2312.03929, arXiv.org.
    8. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    9. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    10. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    11. repec:jss:jstsof:12:i07 is not listed on IDEAS
    12. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
    13. Tong, Zhigang & Liu, Allen, 2021. "A censored Ornstein–Uhlenbeck process for rainfall modeling and derivatives pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    14. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    15. Chiu, Chun-Yuan & Dai, Tian-Shyr & Lyuu, Yuh-Dauh, 2015. "Pricing Asian option by the FFT with higher-order error convergence rate under Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 418-437.
    16. Kurita, Takamitsu, 2020. "Likelihood-based tests for parameter constancy in I(2) CVAR models with an application to fixed-term deposit data," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    17. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    18. Antoine Jacquier & Patrick Roome, 2013. "The Small-Maturity Heston Forward Smile," Papers 1303.4268, arXiv.org, revised Aug 2013.
    19. Gabriel Drimus, 2010. "A forward started jump-diffusion model and pricing of cliquet style exotics," Review of Derivatives Research, Springer, vol. 13(2), pages 125-140, July.
    20. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    21. Nordahl, Helge A., 2008. "Valuation of life insurance surrender and exchange options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 909-919, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.08291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.