IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v27y2020i3p171-188.html
   My bibliography  Save this article

Additive Processes with Bilateral Gamma Marginals

Author

Listed:
  • Dilip B. Madan
  • King Wang

Abstract

The Sato process associated with self decomposable laws at unit time is further generalized to an additive process with arbitrary innovation term structures. A second generalization to additive processes consistent with bilateral gamma marginal distributions is also made. The Sato process is a parametric special case of the two generalizations. This feature is exploited in defining calibration starting values. Calibration results are presented for $$1255$$1255 days of daily data on SPY options. The deterministic innovation variance model makes a median improvement of $$15\% $$15% in root-mean-square error over the Sato process. The comparable value for the general additive process is $$40\%.$$40%. The Sato process relative to the general additive process overprices negative moves and underprices positive ones. The underpricing of negative moves decreases with maturity. On the positive side, the overpricing decreases with maturity. For negative moves, the overpricing is larger for smaller moves, while for positive moves the underpricing is larger for the larger moves.

Suggested Citation

  • Dilip B. Madan & King Wang, 2020. "Additive Processes with Bilateral Gamma Marginals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(3), pages 171-188, May.
  • Handle: RePEc:taf:apmtfi:v:27:y:2020:i:3:p:171-188
    DOI: 10.1080/1350486X.2020.1779597
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2020.1779597
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2020.1779597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Carr & Lorenzo Torricelli, 2021. "Additive logistic processes in option pricing," Finance and Stochastics, Springer, vol. 25(4), pages 689-724, October.
    2. Michele Azzone & Roberto Baviera, 2023. "Is (independent) subordination relevant in option pricing?," Papers 2307.08628, arXiv.org, revised Oct 2023.
    3. Chun Yat Yeung & Ali Hirsa, 2022. "Saddle-Point Approach to Large-Time Volatility Smile," Papers 2212.05671, arXiv.org.
    4. Michele Azzone & Roberto Baviera, 2023. "A fast Monte Carlo scheme for additive processes and option pricing," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    5. Victor Korolev & Alexander Zeifman, 2023. "Quasi-Exponentiated Normal Distributions: Mixture Representations and Asymmetrization," Mathematics, MDPI, vol. 11(17), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:27:y:2020:i:3:p:171-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.