IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v34y2014i12p1095-1121.html
   My bibliography  Save this article

Monte Carlo Simulation of the CGMY Process and Option Pricing

Author

Listed:
  • Laura Ballotta
  • Ioannis Kyriakou

Abstract

We present a joint Monte Carlo‐Fourier transform sampling scheme for pricing derivative products under a Carr–Geman–Madan–Yor (CGMY) model (Carr et al. [Journal of Business, 75, 305–332, 2002]) exhibiting jumps of infinite activity and finite or infinite variation. The approach relies on numerical transform inversion with computable error estimates, which allow generating the unknown cumulative distribution function of the CGMY process increments at the desired accuracy level. We use this to generate samples and simulate the entire trajectory of the process without need of truncating the process small jumps. We illustrate the computational efficiency of the proposed method by comparing it to the existing methods in the literature on pricing a wide range of option contracts, including path‐dependent univariate and multivariate products. © 2014 Wiley Periodicals, Inc. Jrl Fut Mark 34:1095–1121, 2014

Suggested Citation

  • Laura Ballotta & Ioannis Kyriakou, 2014. "Monte Carlo Simulation of the CGMY Process and Option Pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1095-1121, December.
  • Handle: RePEc:wly:jfutmk:v:34:y:2014:i:12:p:1095-1121
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting He, 2020. "Nonparametric Predictive Inference for Asian options," Papers 2008.13082, arXiv.org.
    2. Michele Azzone & Roberto Baviera, 2021. "A fast Monte Carlo scheme for additive processes and option pricing," Papers 2112.08291, arXiv.org, revised Jul 2023.
    3. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    4. Cai, Chengyou & Wang, Xingchun & Yu, Baimin, 2024. "Pricing vulnerable spread options with liquidity risk under Lévy processes," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    5. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    6. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    7. He, Ting, 2023. "An imprecise pricing model for Asian options based on Nonparametric predictive inference," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    8. Michele Azzone & Roberto Baviera, 2023. "A fast Monte Carlo scheme for additive processes and option pricing," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    9. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Simulation of a L\'evy process, its extremum, and hitting time of the extremum via characteristic functions," Papers 2312.03929, arXiv.org.
    10. Chengwei Zhang & Zhiyuan Zhang, 2017. "Sequential Sampling for CGMY Processes via Decomposition of their Time Changes," Papers 1708.00189, arXiv.org, revised Aug 2018.
    11. Søren Asmussen, 2022. "On the role of skewness and kurtosis in tempered stable (CGMY) Lévy models in finance," Finance and Stochastics, Springer, vol. 26(3), pages 383-416, July.
    12. Chengwei Zhang & Zhiyuan Zhang, 2018. "Sequential sampling for CGMY processes via decomposition of their time changes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 522-534, September.
    13. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    14. Michele Bianchi & Frank Fabozzi, 2014. "Discussion of ‘on simulation and properties of the stable law’ by Devroye and James," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 353-357, August.
    15. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    16. Wang, Chuan-Ju & Kao, Ming-Yang, 2016. "Optimal search for parameters in Monte Carlo simulation for derivative pricing," European Journal of Operational Research, Elsevier, vol. 249(2), pages 683-690.
    17. Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
    18. Chiu, Chun-Yuan & Dai, Tian-Shyr & Lyuu, Yuh-Dauh, 2015. "Pricing Asian option by the FFT with higher-order error convergence rate under Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 418-437.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:34:y:2014:i:12:p:1095-1121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.