IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v22y2022i3p501-518.html
   My bibliography  Save this article

Additive normal tempered stable processes for equity derivatives and power-law scaling

Author

Listed:
  • Michele Azzone
  • Roberto Baviera

Abstract

We introduce a simple additive process for equity index derivatives. The model generalizes Lévy Normal Tempered Stable processes (e.g. NIG and VG) with time-dependent parameters. It accurately fits the equity index volatility surfaces in the whole time range of quoted instruments, including options with small time-horizon (days) and long time-horizon (years). We introduce the model via its characteristic function. This allows using classical Fourier pricing techniques. We discuss the calibration issues in detail and we show that, in terms of mean squared error, calibration is on average two orders of magnitude better than both Lévy and Sato processes alternatives. We show that even if the model loses the classical stationarity property of Lévy processes, it presents interesting scaling properties for the calibrated parameters.

Suggested Citation

  • Michele Azzone & Roberto Baviera, 2022. "Additive normal tempered stable processes for equity derivatives and power-law scaling," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 501-518, March.
  • Handle: RePEc:taf:quantf:v:22:y:2022:i:3:p:501-518
    DOI: 10.1080/14697688.2021.1983200
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2021.1983200
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2021.1983200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Azzone & Roberto Baviera, 2023. "Is (independent) subordination relevant in option pricing?," Papers 2307.08628, arXiv.org, revised Oct 2023.
    2. Michele Azzone & Roberto Baviera, 2023. "A fast Monte Carlo scheme for additive processes and option pricing," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    3. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:22:y:2022:i:3:p:501-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.