IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v19y2022i4d10.1007_s10287-022-00432-0.html
   My bibliography  Save this article

Insurance premium-based shortfall risk measure induced by cumulative prospect theory

Author

Listed:
  • Sainan Zhang

    (The Chinese University of Hong Kong)

  • Huifu Xu

    (The Chinese University of Hong Kong)

Abstract

The risk measure of utility-based shortfall risk (SR) proposed by Föllmer and Schied (Finance Stoch 6:429–447, 2002) has been well studied in risk management and finance. In this paper, we revisit the concept from an insurance premium perspective. Under some moderate conditions, we show that the indifference equation-based insurance premium calculation can be equivalently formulated as an optimization problem similar to the definition of SR. Subsequently, we call the premium functional as an insurance premium-based shortfall risk measure (IPSR) defined over non-negative random variables. We then use the latter formulation to investigate the properties of the IPSR with a focus on the case that the preference functional is a distorted expected value function based on the cumulative prospect theory (CPT). Specifically, we exploit Weber’s approach (Weber in Math Finance Int J Math Stat Financ Econ 16:419–441, 2006) for characterization of the shortfall risk measure to derive a relationship between properties of IPSR induced by the CPT (IPSR-CPT) and the underlying value function in terms of convexity/concavity and positive homogeneity. We also investigate the IPSR-CPT as a functional of cumulative distribution function of random loss/liability and derive local and global Lipschitz continuity of the function under Wasserstein metric, a property which is related to statistical robustness of the IPSR-CPT. The results cover the premium risk measures based on the von Neumann-Morgenstern’s expected utility and Yaari’s dual theory of choice as special cases. Finally, we propose a computational scheme for calculating the IPSR-CPT.

Suggested Citation

  • Sainan Zhang & Huifu Xu, 2022. "Insurance premium-based shortfall risk measure induced by cumulative prospect theory," Computational Management Science, Springer, vol. 19(4), pages 703-738, October.
  • Handle: RePEc:spr:comgts:v:19:y:2022:i:4:d:10.1007_s10287-022-00432-0
    DOI: 10.1007/s10287-022-00432-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-022-00432-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-022-00432-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Tiantian Mao & Jun Cai, 2018. "Risk measures based on behavioural economics theory," Finance and Stochastics, Springer, vol. 22(2), pages 367-393, April.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Heilpern, S., 2003. "A rank-dependent generalization of zero utility principle," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 67-73, August.
    5. Denneberg, Dieter, 1990. "Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation1," ASTIN Bulletin, Cambridge University Press, vol. 20(2), pages 181-190, November.
    6. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    7. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    8. Itzhak Gilboa & David Schmeidler, 1992. "Additive Representation of Non-Additive Measures and the Choquet Integral," Discussion Papers 985, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    10. Pichler, Alois & Shapiro, Alexander, 2015. "Minimal representation of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 184-193.
    11. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    12. Martina Nardon & Paolo Pianca, 2019. "Insurance premium calculation under continuous cumulative prospect theory," Working Papers 2019:03, Department of Economics, University of Venice "Ca' Foscari".
    13. Cai, Jun & Wang, Ying & Mao, Tiantian, 2017. "Tail subadditivity of distortion risk measures and multivariate tail distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 105-116.
    14. Kaluszka, Marek & Krzeszowiec, Michał, 2012. "Pricing insurance contracts under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 159-166.
    15. Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
    16. Wakker, Peter & Tversky, Amos, 1993. "An Axiomatization of Cumulative Prospect Theory," Journal of Risk and Uncertainty, Springer, vol. 7(2), pages 147-175, October.
    17. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    18. Marco Frittelli & Giacomo Scandolo, 2006. "Risk Measures And Capital Requirements For Processes," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 589-612, October.
    19. Daniel Cavagnaro & Mark Pitt & Richard Gonzalez & Jay Myung, 2013. "Discriminating among probability weighting functions using adaptive design optimization," Journal of Risk and Uncertainty, Springer, vol. 47(3), pages 255-289, December.
    20. Castaño-Martínez, Antonia & López-Blazquez, Fernando & Pigueiras, Gema & Sordo, Miguel Á., 2020. "A Method For Constructing And Interpreting Some Weighted Premium Principles," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 1037-1064, September.
    21. Tsanakas, A. & Desli, E., 2003. "Risk Measures and Theories of Choice," British Actuarial Journal, Cambridge University Press, vol. 9(4), pages 959-991, October.
    22. Wei Wang & Huifu Xu & Tiejun Ma, 2021. "Quantitative statistical robustness for tail-dependent law invariant risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 21(10), pages 1669-1685, October.
    23. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    24. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    25. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    26. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    27. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    28. Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2017. "Domains of weak continuity of statistical functionals with a view toward robust statistics," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 1-19.
    29. Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2012. "Qualitative and infinitesimal robustness of tail-dependent statistical functionals," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 35-47, January.
    30. Daniela Escobar & Georg Pflug, 2018. "The distortion principle for insurance pricing: properties, identification and robustness," Papers 1809.06592, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    2. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    3. Wei Wang & Huifu Xu, 2023. "Preference robust distortion risk measure and its application," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 389-434, April.
    4. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    5. Ruodu Wang, 2016. "Regulatory arbitrage of risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 337-347, March.
    6. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    7. Martina Nardon & Paolo Pianca, 2019. "Behavioral premium principles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 229-257, June.
    8. Martina Nardon & Paolo Pianca, 2019. "Insurance premium calculation under continuous cumulative prospect theory," Working Papers 2019:03, Department of Economics, University of Venice "Ca' Foscari".
    9. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    10. Kaluszka, M. & Laeven, R.J.A. & Okolewski, A., 2012. "A note on weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 379-381.
    11. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    12. Denis Chetverikov & Yukun Liu & Aleh Tsyvinski, 2022. "Weighted-average quantile regression," Papers 2203.03032, arXiv.org.
    13. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
    14. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    15. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    16. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    17. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    18. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    19. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    20. repec:cup:judgdm:v:16:y:2021:i:6:p:1324-1369 is not listed on IDEAS
    21. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:19:y:2022:i:4:d:10.1007_s10287-022-00432-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.