IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v18y2014i2p271-295.html
   My bibliography  Save this article

Comparative and qualitative robustness for law-invariant risk measures

Author

Listed:
  • Volker Krätschmer
  • Alexander Schied
  • Henryk Zähle

Abstract

When estimating the risk of a P&L from historical data or Monte Carlo simulation, the robustness of the estimate is important. We argue here that Hampel’s classical notion of qualitative robustness is not suitable for risk measurement, and we propose and analyze a refined notion of robustness that applies to tail-dependent law-invariant convex risk measures on Orlicz spaces. This concept captures the tradeoff between robustness and sensitivity and can be quantified by an index of qualitative robustness. By means of this index, we can compare various risk measures, such as distortion risk measures, in regard to their degree of robustness. Our analysis also yields results of independent interest such as continuity properties and consistency of estimators for risk measures, or a Skorohod representation theorem for ψ-weak convergence. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
  • Handle: RePEc:spr:finsto:v:18:y:2014:i:2:p:271-295
    DOI: 10.1007/s00780-013-0225-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-013-0225-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-013-0225-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrzej Ruszczynski & Alexander Shapiro, 2004. "Optimization of Convex Risk Functions," Risk and Insurance 0404001, University Library of Munich, Germany, revised 08 Oct 2005.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Beutner, Eric & Zähle, Henryk, 2010. "A modified functional delta method and its application to the estimation of risk functionals," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2452-2463, November.
    4. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    5. Alexander Schied, 2004. "On the Neyman-Pearson problem for law-invariant risk measures and robust utility functionals," Papers math/0407127, arXiv.org.
    6. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    7. Denneberg, Dieter, 1990. "Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation1," ASTIN Bulletin, Cambridge University Press, vol. 20(2), pages 181-190, November.
    8. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    9. Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2012. "Qualitative and infinitesimal robustness of tail-dependent statistical functionals," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 35-47, January.
    10. Hideatsu Tsukahara, 2013. "Estimation of Distortion Risk Measures," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 213-235, December.
    11. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    12. Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
    13. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    14. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    15. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    16. Dilip B. Madan & Alexander Cherny, 2010. "Markets As A Counterparty: An Introduction To Conic Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(08), pages 1149-1177.
    17. Belomestny, Denis & Krätschmer, Volker, 2010. "Central limit theorems for law-invariant coherent risk measures," SFB 649 Discussion Papers 2010-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Alexander Cherny & Dilip Madan, 2009. "New Measures for Performance Evaluation," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2371-2406, July.
    19. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    2. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    3. Sainan Zhang & Huifu Xu, 2022. "Insurance premium-based shortfall risk measure induced by cumulative prospect theory," Computational Management Science, Springer, vol. 19(4), pages 703-738, October.
    4. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Distortion risk measures in random environments: construction and axiomatic characterization," Papers 2211.00520, arXiv.org, revised Mar 2023.
    5. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    6. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    7. Darinka Dentcheva & Spiridon Penev & Andrzej Ruszczyński, 2017. "Statistical estimation of composite risk functionals and risk optimization problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 737-760, August.
    8. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    9. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    10. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    11. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    12. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    13. Daniel Bartl & Ludovic Tangpi, 2020. "Non-asymptotic convergence rates for the plug-in estimation of risk measures," Papers 2003.10479, arXiv.org, revised Oct 2022.
    14. Rossello, Damiano, 2015. "Ranking of investment funds: Acceptability versus robustness," European Journal of Operational Research, Elsevier, vol. 245(3), pages 828-836.
    15. Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2017. "Domains of weak continuity of statistical functionals with a view toward robust statistics," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 1-19.
    16. Krätschmer Volker & Schied Alexander & Zähle Henryk, 2015. "Quasi-Hadamard differentiability of general risk functionals and its application," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 25-47, April.
    17. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2014. "Quasi-Hadamard differentiability of general risk functionals and its application," Papers 1401.3167, arXiv.org, revised Feb 2015.
    18. Labopin-Richard T. & Gamboa F. & Garivier A. & Iooss B., 2016. "Bregman superquantiles. Estimation methods and applications," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-33, March.
    19. Rüdiger Kiesel & Robin Rühlicke & Gerhard Stahl & Jinsong Zheng, 2016. "The Wasserstein Metric and Robustness in Risk Management," Risks, MDPI, vol. 4(3), pages 1-14, August.
    20. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.

    More about this item

    Keywords

    Law-invariant risk measure; Convex risk measure; Coherent risk measure; Orlicz space; Qualitative robustness; Comparative robustness; Index of qualitative robustness; Hampel’s theorem; ψ-Weak topology; Distortion risk measure; Skorohod representation; 62G35; 60B10; 60F05; 91B30; 28A33; D81;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:18:y:2014:i:2:p:271-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.