IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v158y2017icp1-19.html
   My bibliography  Save this article

Domains of weak continuity of statistical functionals with a view toward robust statistics

Author

Listed:
  • Krätschmer, Volker
  • Schied, Alexander
  • Zähle, Henryk

Abstract

Many standard estimators such as several maximum likelihood estimators or the empirical estimator for any law-invariant convex risk measure are not (qualitatively) robust in the classical sense. However, these estimators may nevertheless satisfy a weak robustness property (Krätschmer et al. (2012, 2014)) or a local robustness property (Zähle (2016)) on relevant sets of distributions. One aim of our paper is to identify sets of local robustness, and to explain the benefit of the knowledge of such sets. For instance, we will be able to demonstrate that many maximum likelihood estimators are robust on their natural parametric domains. A second aim consists in extending the general theory of robust estimation to our local framework. In particular we provide a corresponding Hampel-type theorem linking local robustness of a plug-in estimator with a certain continuity condition.

Suggested Citation

  • Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2017. "Domains of weak continuity of statistical functionals with a view toward robust statistics," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 1-19.
  • Handle: RePEc:eee:jmvana:v:158:y:2017:i:c:p:1-19
    DOI: 10.1016/j.jmva.2017.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17300982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    2. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    3. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    4. Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2012. "Qualitative and infinitesimal robustness of tail-dependent statistical functionals," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 35-47, January.
    5. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    6. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    7. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    8. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Embrechts & Alexander Schied & Ruodu Wang, 2018. "Robustness in the Optimization of Risk Measures," Papers 1809.09268, arXiv.org, revised Feb 2021.
    2. Henryk Zähle, 2022. "A concept of copula robustness and its applications in quantitative risk management," Finance and Stochastics, Springer, vol. 26(4), pages 825-875, October.
    3. Ruodu Wang & Johanna F. Ziegel, 2018. "Scenario-based Risk Evaluation," Papers 1808.07339, arXiv.org, revised May 2021.
    4. Patrick Kern & Axel Simroth & Henryk Zähle, 2020. "First-order sensitivity of the optimal value in a Markov decision model with respect to deviations in the transition probability function," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 165-197, August.
    5. Ruodu Wang & Johanna F. Ziegel, 2021. "Scenario-based risk evaluation," Finance and Stochastics, Springer, vol. 25(4), pages 725-756, October.
    6. Niushan Gao & Foivos Xanthos, 2024. "A note on continuity and asymptotic consistency of measures of risk and variability," Papers 2405.09766, arXiv.org, revised Oct 2024.
    7. Sainan Zhang & Huifu Xu, 2022. "Insurance premium-based shortfall risk measure induced by cumulative prospect theory," Computational Management Science, Springer, vol. 19(4), pages 703-738, October.
    8. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krätschmer Volker & Schied Alexander & Zähle Henryk, 2015. "Quasi-Hadamard differentiability of general risk functionals and its application," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 25-47, April.
    2. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    3. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    4. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    5. M. Burzoni & I. Peri & C. M. Ruffo, 2017. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1735-1743, November.
    6. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    7. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    8. Zähle, Henryk, 2016. "A definition of qualitative robustness for general point estimators, and examples," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 12-31.
    9. Koch-Medina Pablo & Munari Cosimo, 2014. "Law-invariant risk measures: Extension properties and qualitative robustness," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 215-236, December.
    10. Müller, Fernanda Maria & Santos, Samuel Solgon & Gössling, Thalles Weber & Righi, Marcelo Brutti, 2022. "Comparison of risk forecasts for cryptocurrencies: A focus on Range Value at Risk," Finance Research Letters, Elsevier, vol. 48(C).
    11. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    12. Tobias Fissler & Johanna F. Ziegel, 2015. "Higher order elicitability and Osband's principle," Papers 1503.08123, arXiv.org, revised Sep 2015.
    13. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    14. Matteo Burzoni & Ilaria Peri & Chiara Maria Ruffo, 2016. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Papers 1603.09491, arXiv.org, revised Feb 2017.
    15. Henryk Zähle, 2022. "A concept of copula robustness and its applications in quantitative risk management," Finance and Stochastics, Springer, vol. 26(4), pages 825-875, October.
    16. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    17. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    18. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    19. Shengzhong Chen & Niushan Gao & Denny Leung & Lei Li, 2021. "Automatic Fatou Property of Law-invariant Risk Measures," Papers 2107.08109, arXiv.org, revised Jan 2022.
    20. Mario Ghossoub & Jesse Hall & David Saunders, 2020. "Maximum Spectral Measures of Risk with given Risk Factor Marginal Distributions," Papers 2010.14673, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:158:y:2017:i:c:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.