IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1707.05596.html
   My bibliography  Save this paper

Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk

Author

Listed:
  • Xue Dong He
  • Xianhua Peng

Abstract

The regulator is interested in proposing a capital adequacy test by specifying an acceptance set for firms' capital positions at the end of a given period. This set needs to be surplus-invariant, i.e., not to depend on the surplus of firms' shareholders, because the test means to protect firms' liability holders. We prove that any surplus-invariant, law-invariant, and conic acceptance set must be the set of capital positions whose value-at-risk at a given level is less than zero. The result still holds if we replace conicity with numeraire-invariance, a property stipulating that whether a firm passes the test should not depend on the currency used to denominate its assets.

Suggested Citation

  • Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
  • Handle: RePEc:arx:papers:1707.05596
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1707.05596
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koch-Medina, Pablo & Moreno-Bromberg, Santiago & Munari, Cosimo, 2015. "Capital adequacy tests and limited liability of financial institutions," Journal of Banking & Finance, Elsevier, vol. 51(C), pages 93-102.
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. Koch-Medina, Pablo & Munari, Cosimo, 2016. "Unexpected shortfalls of Expected Shortfall: Extreme default profiles and regulatory arbitrage," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 141-151.
    4. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    5. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2012. "Capital requirements with defaultable securities," Papers 1203.4610, arXiv.org, revised Jan 2014.
    6. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    7. Pablo Koch-Medina & Cosimo Munari & Mario Sikic, 2015. "Diversification, protection of liability holders and regulatory arbitrage," Papers 1502.03252, arXiv.org, revised Apr 2016.
    8. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    9. repec:dau:papers:123456789/353 is not listed on IDEAS
    10. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2014. "Beyond cash-additive risk measures: when changing the numéraire fails," Finance and Stochastics, Springer, vol. 18(1), pages 145-173, January.
    11. repec:dau:papers:123456789/342 is not listed on IDEAS
    12. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    13. Rama Cont & Romain Deguest & Xuedong He, 2011. "Loss-Based Risk Measures," Papers 1110.1436, arXiv.org, revised Apr 2013.
    14. Hans Föllmer & Stefan Weber, 2015. "The Axiomatic Approach to Risk Measures for Capital Determination," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 301-337, December.
    15. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    16. Artzner, Philippe & Delbaen, Freddy & Koch-Medina, Pablo, 2009. "Risk Measures and Efficient use of Capital 1," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 101-116, May.
    17. Farkas, Walter & Koch-Medina, Pablo & Munari, Cosimo, 2014. "Capital requirements with defaultable securities," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 58-67.
    18. Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
    19. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    20. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2012. "Beyond cash-additive risk measures: when changing the num\'{e}raire fails," Papers 1206.0478, arXiv.org, revised Feb 2014.
    21. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    22. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    23. Mark H. A. Davis, 2014. "Verification of internal risk measure estimates," Papers 1410.4382, arXiv.org, revised Nov 2015.
    24. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    25. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    26. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Herdegen & Nazem Khan & Cosimo Munari, 2024. "Risk, utility and sensitivity to large losses," Papers 2405.12154, arXiv.org.
    2. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    3. Niushan Gao & Cosimo Munari, 2020. "Surplus-Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1342-1370, November.
    4. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    5. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    2. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    3. Pablo Koch-Medina & Santiago Moreno-Bromberg & Cosimo Munari, 2014. "Capital adequacy tests and limited liability of financial institutions," Papers 1401.3133, arXiv.org, revised Feb 2014.
    4. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    5. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    6. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    7. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    8. Zhaolin Hu & Dali Zhang, 2018. "Utility‐based shortfall risk: Efficient computations via Monte Carlo," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 378-392, August.
    9. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    10. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    11. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    12. Ruodu Wang, 2016. "Regulatory arbitrage of risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 337-347, March.
    13. George Tzagkarakis & Frantz Maurer, 2020. "An energy-based measure for long-run horizon risk quantification," Annals of Operations Research, Springer, vol. 289(2), pages 363-390, June.
    14. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    15. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    16. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    17. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
    18. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    19. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    20. Cosimo Munari & Stefan Weber & Lutz Wilhelmy, 2023. "Capital requirements and claims recovery: A new perspective on solvency regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 329-380, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1707.05596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.