IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v22y2018i2d10.1007_s00780-018-0358-6.html
   My bibliography  Save this article

Risk measures based on behavioural economics theory

Author

Listed:
  • Tiantian Mao

    (University of Science and Technology of China)

  • Jun Cai

    (University of Waterloo)

Abstract

Coherent risk measures (Artzner et al. in Math. Finance 9:203–228, 1999) and convex risk measures (Föllmer and Schied in Finance Stoch. 6:429–447, 2002) are characterized by desired axioms for risk measures. However, concrete or practical risk measures could be proposed from different perspectives. In this paper, we propose new risk measures based on behavioural economics theory. We use rank-dependent expected utility (RDEU) theory to formulate an objective function and propose the smallest solution that minimizes the objective function as a risk measure. We also employ cumulative prospect theory (CPT) to introduce a set of acceptable regulatory capitals and define the infimum of the set as a risk measure. We show that the classes of risk measures derived from RDEU theory and CPT are equivalent, and they are all monetary risk measures. We present the properties of the proposed risk measures and give sufficient and necessary conditions for them to be coherent and convex, respectively. The risk measures based on these behavioural economics theories not only cover important risk measures such as distortion risk measures, expectiles and shortfall risk measures, but also produce new interesting coherent risk measures and convex, but not coherent risk measures.

Suggested Citation

  • Tiantian Mao & Jun Cai, 2018. "Risk measures based on behavioural economics theory," Finance and Stochastics, Springer, vol. 22(2), pages 367-393, April.
  • Handle: RePEc:spr:finsto:v:22:y:2018:i:2:d:10.1007_s00780-018-0358-6
    DOI: 10.1007/s00780-018-0358-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-018-0358-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-018-0358-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Ulrich Schmidt & Horst Zank, 2008. "Risk Aversion in Cumulative Prospect Theory," Management Science, INFORMS, vol. 54(1), pages 208-216, January.
    3. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    4. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Hong, Chew Soo & Karni, Edi & Safra, Zvi, 1987. "Risk aversion in the theory of expected utility with rank dependent probabilities," Journal of Economic Theory, Elsevier, vol. 42(2), pages 370-381, August.
    8. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    9. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    12. Kaluszka, Marek & Krzeszowiec, Michał, 2012. "Mean-Value Principle under Cumulative Prospect Theory," ASTIN Bulletin, Cambridge University Press, vol. 42(1), pages 103-122, May.
    13. Bauerle, Nicole & Muller, Alfred, 2006. "Stochastic orders and risk measures: Consistency and bounds," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 132-148, February.
    14. repec:dau:papers:123456789/342 is not listed on IDEAS
    15. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    16. Kaluszka, Marek & Krzeszowiec, Michał, 2012. "Pricing insurance contracts under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 159-166.
    17. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    18. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    19. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    20. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Jun & Wang, Ying, 2021. "Optimal capital allocation principles considering capital shortfall and surplus risks in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 329-349.
    2. Chen, Ouxiang & Hu, Taizhong, 2019. "Extreme-aggregation measures in the RDEU model," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 155-163.
    3. Mao, Tiantian & Hu, Jiuyun & Liu, Haiyan, 2018. "The average risk sharing problem under risk measure and expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 170-179.
    4. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    5. Mao, Tiantian & Stupfler, Gilles & Yang, Fan, 2023. "Asymptotic properties of generalized shortfall risk measures for heavy-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 173-192.
    6. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    7. Haoyu Chen & Kun Fan, 2022. "Tail Value-at-Risk-Based Expectiles for Extreme Risks and Their Application in Distributionally Robust Portfolio Selections," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    8. Elroi Hadad & Tomer Shushi & Rami Yosef, 2023. "Measuring Systemic Governmental Reinsurance Risks of Extreme Risk Events," Risks, MDPI, vol. 11(3), pages 1-11, February.
    9. Zongxia Liang & Jianming Xia & Keyu Zhang, 2023. "Equilibrium stochastic control with implicitly defined objective functions," Papers 2312.15173, arXiv.org, revised Dec 2023.
    10. René Carmona, 2022. "The influence of economic research on financial mathematics: Evidence from the last 25 years," Finance and Stochastics, Springer, vol. 26(1), pages 85-101, January.
    11. Ruoxuan Li & Wenhua Lv & Tiantian Mao, 2023. "Shortfall-Based Wasserstein Distributionally Robust Optimization," Mathematics, MDPI, vol. 11(4), pages 1-25, February.
    12. Sainan Zhang & Huifu Xu, 2022. "Insurance premium-based shortfall risk measure induced by cumulative prospect theory," Computational Management Science, Springer, vol. 19(4), pages 703-738, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    2. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    3. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    4. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    5. Martina Nardon & Paolo Pianca, 2019. "Behavioral premium principles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 229-257, June.
    6. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    7. Martina Nardon & Paolo Pianca, 2019. "Insurance premium calculation under continuous cumulative prospect theory," Working Papers 2019:03, Department of Economics, University of Venice "Ca' Foscari".
    8. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    9. Chen, Ouxiang & Hu, Taizhong, 2019. "Extreme-aggregation measures in the RDEU model," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 155-163.
    10. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    11. Ulrich Schmidt & Horst Zank, 2008. "Risk Aversion in Cumulative Prospect Theory," Management Science, INFORMS, vol. 54(1), pages 208-216, January.
    12. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    13. Zvi Safra & Uzi Segal, 2005. "Are Universal Preferences Possible? Calibration Results for Non-Expected Utility Theories," Boston College Working Papers in Economics 633, Boston College Department of Economics.
    14. Trabelsi, Mohamed Ali, 2006. "Les nouveaux modèles de décision dans le risque et l’incertain : quel apport ? [The new models of decision under risk or uncertainty : What approach?]," MPRA Paper 25442, University Library of Munich, Germany.
    15. Peter Brooks & Simon Peters & Horst Zank, 2014. "Risk behavior for gain, loss, and mixed prospects," Theory and Decision, Springer, vol. 77(2), pages 153-182, August.
    16. Eeckhoudt, Louis R. & Laeven, Roger J.A. & Schlesinger, Harris, 2020. "Risk apportionment: The dual story," Journal of Economic Theory, Elsevier, vol. 185(C).
    17. David B. BROWN & Enrico G. DE GIORGI & Melvyn SIM, 2009. "A Satiscing Alternative to Prospect Theory," Swiss Finance Institute Research Paper Series 09-19, Swiss Finance Institute.
    18. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.
    19. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    20. Enrico G. De Giorgi & Ola Mahmoud, 2016. "Diversification preferences in the theory of choice," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 143-174, November.

    More about this item

    Keywords

    Distortion risk measure; Expectile; Coherent risk measure; Convex risk measure; Monetary risk measure; Stop-loss order preserving; Rank-dependent expected utility theory; Cumulative prospect theory;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:22:y:2018:i:2:d:10.1007_s00780-018-0358-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.