IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v9y2003i4d10.1023_bcmot.0000029053.10244.bd.html
   My bibliography  Save this article

Supporting Learning in Evolving Dynamic Environments

Author

Listed:
  • Faison P. Gibson

    (University of Michigan Business School)

Abstract

In dynamic decision environments such as direct sales, customer support, and electronically mediated bargaining, decision makers execute sequences of interdependent decisions under time pressure. Past decision support systems have focused on substituting for decision makers' cognitive deficits by relieving them of the need to explicitly account for sequential dependencies. However, these systems themselves are fragile to change and, further, do not enhance decision makers' own adaptive capacities. This study presents an alternative strategy that defines information systems requirements in terms of enhancing decision makers' adaptation. In so doing, the study introduces a simulation model of how decision makers learn patterns of sequential dependency. When a system was used to manage workflows in a way predicted by the model to enhance learning, decision makers in a bargaining experiment learned underlying patterns of sequential dependencythat helped them adapt to new situations. This result is rare if not unique in the study of dynamic decision environments. It indicates that a shift, away from substituting for short-term deficits and toward enhancing pattern learning, can substantially improve the effectiveness of decision support in dynamic environments. Based on the specific findings in this study, this shift has important implications for designing information system workflows and potential future applications in interface design.

Suggested Citation

  • Faison P. Gibson, 2003. "Supporting Learning in Evolving Dynamic Environments," Computational and Mathematical Organization Theory, Springer, vol. 9(4), pages 305-326, December.
  • Handle: RePEc:spr:comaot:v:9:y:2003:i:4:d:10.1023_b:cmot.0000029053.10244.bd
    DOI: 10.1023/B:CMOT.0000029053.10244.bd
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:CMOT.0000029053.10244.bd
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:CMOT.0000029053.10244.bd?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Camerer, Colin F & Hogarth, Robin M, 1999. "The Effects of Financial Incentives in Experiments: A Review and Capital-Labor-Production Framework," Journal of Risk and Uncertainty, Springer, vol. 19(1-3), pages 7-42, December.
    3. Gibson, Faison P., 2000. "Feedback Delays: How Can Decision Makers Learn Not to Buy a New Car Every Time the Garage Is Empty?," Organizational Behavior and Human Decision Processes, Elsevier, vol. 83(1), pages 141-166, September.
    4. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    5. Kishore Sengupta & Tarek K. Abdel-Hamid, 1993. "Alternative Conceptions of Feedback in Dynamic Decision Environments: An Experimental Investigation," Management Science, INFORMS, vol. 39(4), pages 411-428, April.
    6. Sterman, John., 1994. "Learning in and about complex systems," Working papers 3660-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    7. Diehl, Ernst & Sterman, John D., 1995. "Effects of Feedback Complexity on Dynamic Decision Making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 62(2), pages 198-215, May.
    8. Davis, Fred D. & Kottemann, Jeffrey E., 1995. "Determinants of Decision Rule Use in a Production Planning Task," Organizational Behavior and Human Decision Processes, Elsevier, vol. 63(2), pages 145-157, August.
    9. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    10. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faison P. Gibson, 2007. "Learning and transfer in dynamic decision environments," Computational and Mathematical Organization Theory, Springer, vol. 13(1), pages 39-61, March.
    2. Gibson, Faison P., 2000. "Feedback Delays: How Can Decision Makers Learn Not to Buy a New Car Every Time the Garage Is Empty?," Organizational Behavior and Human Decision Processes, Elsevier, vol. 83(1), pages 141-166, September.
    3. Faison P. Gibson, 2002. "Is It Better to Forget? Stimulus-Response, Prediction, and the Weight of Past Experience in a Fast-Paced Bargaining Task," Computational and Mathematical Organization Theory, Springer, vol. 8(1), pages 31-47, May.
    4. Langley, Paul A. & Morecroft, John D. W., 2004. "Performance and learning in a simulation of oil industry dynamics," European Journal of Operational Research, Elsevier, vol. 155(3), pages 715-732, June.
    5. Jinkwon Lee, 2007. "Repetition And Financial Incentives In Economics Experiments," Journal of Economic Surveys, Wiley Blackwell, vol. 21(3), pages 628-681, July.
    6. Strohhecker, Jürgen & Leyer, Michael, 2019. "How stock-flow failure and general cognitive ability impact performance in operational dynamic control tasks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1044-1055.
    7. Rachel Croson & Karen Donohue, 2006. "Behavioral Causes of the Bullwhip Effect and the Observed Value of Inventory Information," Management Science, INFORMS, vol. 52(3), pages 323-336, March.
    8. Luft, Joan & Shields, Michael D., 2003. "Mapping management accounting: graphics and guidelines for theory-consistent empirical research," Accounting, Organizations and Society, Elsevier, vol. 28(2-3), pages 169-249.
    9. Rapoport, Amnon & Stein, William E. & Parco, James E. & Nicholas, Thomas E., 2003. "Equilibrium play and adaptive learning in a three-person centipede game," Games and Economic Behavior, Elsevier, vol. 43(2), pages 239-265, May.
    10. John D. Sterman & Linda Booth Sweeney, 2002. "Cloudy skies: assessing public understanding of global warming," System Dynamics Review, System Dynamics Society, vol. 18(2), pages 207-240, June.
    11. Sweeney, Linda Booth, 1963- & Sterman, John., 2003. "Bathtub dynamics : initial results of a systems thinking inventory," Working papers WP 4132-00., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    12. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    13. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    14. DeJong, D.V. & Blume, A. & Neumann, G., 1998. "Learning in Sender-Receiver Games," Other publications TiSEM 4a8b4f46-f30b-4ad2-bb0c-1, Tilburg University, School of Economics and Management.
    15. Jean-François Laslier & Bernard Walliser, 2015. "Stubborn learning," Theory and Decision, Springer, vol. 79(1), pages 51-93, July.
    16. Rick, Scott & Weber, Roberto A., 2010. "Meaningful learning and transfer of learning in games played repeatedly without feedback," Games and Economic Behavior, Elsevier, vol. 68(2), pages 716-730, March.
    17. Blume, A. & DeJong, D.V. & Neumann, G. & Savin, N.E., 2000. "Learning and Communication in Sender-Reciever Games : An Economic Investigation," Other publications TiSEM 138dc36b-5269-421a-9e79-b, Tilburg University, School of Economics and Management.
    18. Arifovic, Jasmina & Karaivanov, Alexander, 2010. "Learning by doing vs. learning from others in a principal-agent model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1967-1992, October.
    19. Dürsch, Peter & Kolb, Albert & Oechssler, Jörg & Schipper, Burkhard C., 2005. "Rage Against the Machines: How Subjects Learn to Play Against Computers," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 63, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    20. Spiliopoulos, Leonidas, 2012. "Pattern recognition and subjective belief learning in a repeated constant-sum game," Games and Economic Behavior, Elsevier, vol. 75(2), pages 921-935.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:9:y:2003:i:4:d:10.1023_b:cmot.0000029053.10244.bd. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.