IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/halshs-01310229.html
   My bibliography  Save this paper

Stubborn learning

Author

Listed:
  • Jean-François Laslier

    (PSE - Paris-Jourdan Sciences Economiques - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Bernard Walliser

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PSE - Paris-Jourdan Sciences Economiques - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

The paper studies a specific adaptive learning rule when each player faces a unidimensional strategy set. The rule states that a player keeps on incrementing her strategy in the same direction if her utility increased and reverses direction if it decreased. The paper concentrates on games on the square [0,1]×[0,1] as mixed extensions of 2×2 games. We study in general the behavior of the system in the interior as well as on the borders of the strategy space. We then describe the system asymptotic behavior for symmetric, zero-sum, and twin games. Original patterns emerge. For instance, for the "prisoner's dilemma" with symmetric initial conditions, the system goes directly to the symmetric Pareto optimum. For "matching pennies," the system follows slowly expanding cycles around the mixed strategy equilibrium.

Suggested Citation

  • Jean-François Laslier & Bernard Walliser, 2015. "Stubborn learning," PSE-Ecole d'économie de Paris (Postprint) halshs-01310229, HAL.
  • Handle: RePEc:hal:pseptp:halshs-01310229
    DOI: 10.1007/s11238-014-9450-3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    3. Sergiu Hart & Andreu Mas-Colell, 2013. "A General Class Of Adaptive Strategies," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 3, pages 47-76, World Scientific Publishing Co. Pte. Ltd..
    4. H. Peyton Young, 2007. "The Possible and the Impossible in Multi-Agent Learning," Economics Series Working Papers 304, University of Oxford, Department of Economics.
    5. Heinrich H. Nax & Maxwell N. Burton-Chellew & Stuart A. West & H. Peyton Young, 2013. "Learning in a Black Box," Working Papers hal-00817201, HAL.
    6. Selten, Reinhard & Stoecker, Rolf, 1986. "End behavior in sequences of finite Prisoner's Dilemma supergames A learning theory approach," Journal of Economic Behavior & Organization, Elsevier, vol. 7(1), pages 47-70, March.
    7. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    8. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    9. , P. & , Peyton, 2006. "Regret testing: learning to play Nash equilibrium without knowing you have an opponent," Theoretical Economics, Econometric Society, vol. 1(3), pages 341-367, September.
    10. R. M. Harstad & R. Selten, 2014. "Bounded-rationality models:tasks to become intellectually competitive," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    11. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    12. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    13. Brit Grosskopf, 2003. "Reinforcement and Directional Learning in the Ultimatum Game with Responder Competition," Experimental Economics, Springer;Economic Science Association, vol. 6(2), pages 141-158, October.
    14. Laslier, Jean-Francois & Topol, Richard & Walliser, Bernard, 2001. "A Behavioral Learning Process in Games," Games and Economic Behavior, Elsevier, vol. 37(2), pages 340-366, November.
    15. Heinrich H. Nax & Maxwell N. Burton-Chellew & Stuart A. West & H. Peyton Young, 2013. "Learning in a Black Box," PSE Working Papers hal-00817201, HAL.
    16. Simon P. Anderson & Jacob K. Goeree & Charles A. Holt, 2004. "Noisy Directional Learning and the Logit Equilibrium," Scandinavian Journal of Economics, Wiley Blackwell, vol. 106(3), pages 581-602, October.
    17. V. P. Crawford, 2014. "Boundedly rational versus optimization-based models of strategic thinking and learning in games," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drew Fudenberg & Kevin He, 2018. "Learning and Type Compatibility in Signaling Games," Econometrica, Econometric Society, vol. 86(4), pages 1215-1255, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    2. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    3. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    4. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    5. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    6. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    7. V. P. Crawford, 2014. "Boundedly rational versus optimization-based models of strategic thinking and learning in games," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    8. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    9. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," LSE Research Online Documents on Economics 65422, London School of Economics and Political Science, LSE Library.
    10. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 195-208.
    11. Heinrich H. Nax & Maxwell N. Burton-Chellew & Stuart A. West & H. Peyton Young, 2013. "Learning in a Black Box," Working Papers hal-00817201, HAL.
    12. Nax, Heinrich H., 2015. "Equity dynamics in bargaining without information exchange," LSE Research Online Documents on Economics 65426, London School of Economics and Political Science, LSE Library.
    13. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    14. Heinrich Nax, 2015. "Equity dynamics in bargaining without information exchange," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 1011-1026, November.
    15. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    16. DeJong, D.V. & Blume, A. & Neumann, G., 1998. "Learning in Sender-Receiver Games," Other publications TiSEM 4a8b4f46-f30b-4ad2-bb0c-1, Tilburg University, School of Economics and Management.
    17. Walter Gutjahr, 2006. "Interaction dynamics of two reinforcement learners," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(1), pages 59-86, February.
    18. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    19. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2022.
    20. Franke, Reiner, 2003. "Reinforcement learning in the El Farol model," Journal of Economic Behavior & Organization, Elsevier, vol. 51(3), pages 367-388, July.

    More about this item

    Keywords

    Games; Behavior; Learning; Dynamics;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:halshs-01310229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.