IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v177y2024i10d10.1007_s10584-024-03810-6.html
   My bibliography  Save this article

How strong are the links between global warming and surface solar radiation changes?

Author

Listed:
  • Michael Stamatis

    (University of Ioannina)

  • Nikolaos Hatzianastassiou

    (University of Ioannina)

  • Marios-Bruno Korras-Carraca

    (University of Ioannina
    Foundation for Research and Technology Hellas)

  • Christos Matsoukas

    (University of the Aegean)

  • Martin Wild

    (ETH Zurich)

  • Ilias Vardavas

    (University of Crete)

Abstract

The aim of this study is to investigate the possible relationship between the recent global warming and the interdecadal changes in incoming surface solar radiation (SSR), known as global dimming and brightening (GDB). The analysis is done on a monthly and annual basis on a global scale for the 35-year period 1984–2018 using surface temperature data from the European Centre for Medium-Range Weather Forecasts (ECMWF) v5 (ERA5) reanalysis and SSR fluxes from the FORTH (Foundation for Research and Technology-Hellas) radiative transfer model (RTM). Our analysis shows that on a monthly basis, SSR is correlated with temperature more strongly over global land than ocean areas. According to the RTM calculations, the SSR increased (inducing brightening) over most land areas during 1984–1999, while this increase leveled-off (causing dimming) in the 2000s and strengthened again in the 2010s. These SSR fluctuations are found to affect the global warming rates. Specifically, during the dimming phase in the 2000s, the warming rates across land areas with intense anthropogenic pollution, like Europe and East Asia, slowed down, while during the brightening phases, in the 1980s, 1990s and 2010s, the warming rates were reinforced. Although the magnitude of GDB and the Earth’s surface warming trends are not proportional, indicating that GDB is not the primary driver of the recent global warming, it seems that GDB can affect the warming rates, partly counterbalancing the dominant greenhouse warming during the dimming or accelerating the greenhouse-induced warming during the brightening phases of GDB.

Suggested Citation

  • Michael Stamatis & Nikolaos Hatzianastassiou & Marios-Bruno Korras-Carraca & Christos Matsoukas & Martin Wild & Ilias Vardavas, 2024. "How strong are the links between global warming and surface solar radiation changes?," Climatic Change, Springer, vol. 177(10), pages 1-22, October.
  • Handle: RePEc:spr:climat:v:177:y:2024:i:10:d:10.1007_s10584-024-03810-6
    DOI: 10.1007/s10584-024-03810-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-024-03810-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-024-03810-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaufmann, R. K. & Kauppi, H. & Mann, M. L. & Stock, James H., 2011. "Reconciling anthropogenic climate change with observed temperature 1998–2008," Scholarly Articles 29071926, Harvard University Department of Economics.
    2. Martin Wild, 2016. "Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 7(1), pages 91-107, January.
    3. Wei Liu & Shang-Ping Xie & Jian Lu, 2016. "Tracking ocean heat uptake during the surface warming hiatus," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    4. Matthew H. England & Jules B. Kajtar & Nicola Maher, 2015. "Robust warming projections despite the recent hiatus," Nature Climate Change, Nature, vol. 5(5), pages 394-396, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    2. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    3. James H. Stock, 2019. "Climate Change, Climate Policy, and Economic Growth," NBER Chapters, in: NBER Macroeconomics Annual 2019, volume 34, pages 399-419, National Bureau of Economic Research, Inc.
    4. Chang, Yoosoon & Kaufmann, Robert K. & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2020. "Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate," Journal of Econometrics, Elsevier, vol. 214(1), pages 274-294.
    5. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "Quantifying the air pollution impacts on solar photovoltaic capacity factors and potential benefits of pollution control for the solar sector in China," Applied Energy, Elsevier, vol. 365(C).
    6. Michieka, Nyakundi M. & Fletcher, Jerald J., 2012. "An investigation of the role of China's urban population on coal consumption," Energy Policy, Elsevier, vol. 48(C), pages 668-676.
    7. Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Ignacio Losada Carreño & Michael T. Craig & Michael Rossol & Moetasim Ashfaq & Fulden Batibeniz & Sue Ellen Haupt & Caroline Draxl & Bri-Mathias Hodge & Carlo Brancucci, 2020. "Potential impacts of climate change on wind and solar electricity generation in Texas," Climatic Change, Springer, vol. 163(2), pages 745-766, November.
    9. Dergiades, Theologos & Kaufmann, Robert K. & Panagiotidis, Theodore, 2016. "Long-run changes in radiative forcing and surface temperature: The effect of human activity over the last five centuries," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 67-85.
    10. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    11. Zuluaga, Cristian Felipe & Avila-Diaz, Alvaro & Justino, Flavio B. & Martins, Fernando Ramos & Ceron, Wilmar L., 2022. "The climate change perspective of photovoltaic power potential in Brazil," Renewable Energy, Elsevier, vol. 193(C), pages 1019-1031.
    12. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    13. Nicola Scafetta, 2013. "Solar and Planetary Oscillation Control on Climate Change: Hind-Cast, Forecast and a Comparison with the Cmip5 Gcms," Energy & Environment, , vol. 24(3-4), pages 455-496, June.
    14. Chen, Xie & Zhou, Chaohui & Tian, Zhiyong & Mao, Hongzhi & Luo, Yongqiang & Sun, Deyu & Fan, Jianhua & Jiang, Liguang & Deng, Jie & Rosen, Marc A., 2023. "Different photovoltaic power potential variations in East and West China," Applied Energy, Elsevier, vol. 351(C).
    15. Richard S.J. Tol & Francisco Estrada, 2013. "Estimating the Global Impacts of Climate Variability and Change During the 20th Century," Working Paper Series 6213, Department of Economics, University of Sussex Business School.
    16. Phillips, Peter C.B. & Leirvik, Thomas & Storelvmo, Trude, 2020. "Econometric estimates of Earth’s transient climate sensitivity," Journal of Econometrics, Elsevier, vol. 214(1), pages 6-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:177:y:2024:i:10:d:10.1007_s10584-024-03810-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.