IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i3d10.1007_s10584-023-03498-0.html
   My bibliography  Save this article

Vulnerability of diked marsh ecosystems under climate change

Author

Listed:
  • Kristof Dorau

    (University of Cologne)

  • Tim Mansfeldt

    (University of Cologne)

Abstract

Diked marsh soils are natural laboratories where soil-forming processes take place over a short period of time, such as the aeration of previously water-saturated soil environments along with desalinization. These manmade ecosystems are threatened by climate change in multiple ways. Since long-term data to evaluate the vulnerability of these settings is scarce, we merged hydrological (water table, WT; electrical conductivity, EC; sea level rise), pedological (redox potential, EH; air-filled porosity, AFP), and meteorological variables (evapotranspiration, ET0; climatic water balance, CWB), and discussed the holistic relationship between these under future climate scenarios. Our multifactorial data identified ET0 as the strongest driver of WT development with a causal dependency on AFP and subsequently on EH. Within 11 years of intense monitoring, we encountered an extension of the soils’ aeration windows (EH > 300 mV) due to an enhanced seasonal WT component; i.e., the difference between winter and summer WT positions increased. This process has an impact on capillary rise from groundwaters and EC patterns due to increased seasonal variations. Desalinization stabilized two decades after diking, and the present EC does not indicate any saltwater intrusion to these near-coastal settings at present. However, sea level rise and a reduced CWB in the future will foster capillary rise from potentially salt-enriched groundwaters into the topsoils of these highly productive ecosystems. These mechanisms need to be evaluated to account for climate change–driven impacts on coastal-diked marsh soils. Indeed, a holistic view of pedological, meteorological, and hydrological variables is urgently needed.

Suggested Citation

  • Kristof Dorau & Tim Mansfeldt, 2023. "Vulnerability of diked marsh ecosystems under climate change," Climatic Change, Springer, vol. 176(3), pages 1-16, March.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:3:d:10.1007_s10584-023-03498-0
    DOI: 10.1007/s10584-023-03498-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03498-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03498-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinping Wang & John A. Church & Xuebin Zhang & Xianyao Chen, 2021. "Reconciling global mean and regional sea level change in projections and observations," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Wen-Ying Wu & Min-Hui Lo & Yoshihide Wada & James S. Famiglietti & John T. Reager & Pat J.-F. Yeh & Agnès Ducharne & Zong-Liang Yang, 2020. "Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Kristof Dorau & Chris Bamminger & Daniel Koch & Tim Mansfeldt, 2022. "Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany," Climatic Change, Springer, vol. 170(1), pages 1-13, January.
    4. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    5. A. M. Nahlik & M. S. Fennessy, 2016. "Carbon storage in US wetlands," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Surun, Clément & Drechsler, Martin, 2018. "Effectiveness of Tradable Permits for the Conservation of Metacommunities With Two Competing Species," Ecological Economics, Elsevier, vol. 147(C), pages 189-196.
    2. Alexander Platzer & Thomas Nussbaumer & Thomas Karonitsch & Josef S Smolen & Daniel Aletaha, 2019. "Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    3. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    4. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    6. Cholez, Celia & Pauly, Olivier & Mahdad, Maral & Mehrabi, Sepide & Giagnocavo, Cynthia & Bijman, Jos, 2023. "Heterogeneity of inter-organizational collaborations in agrifood chain sustainability-oriented innovations," Agricultural Systems, Elsevier, vol. 212(C).
    7. Florence Jacquet & A Aboul-Naga & Bernard Hubert, 2020. "The contribution of ARIMNet to address livestock systems resilience in the Mediterranean region," Post-Print hal-03625860, HAL.
    8. Marika Vitali & Paolo Bosi & Elena Santacroce & Paolo Trevisi, 2021. "The multivariate approach identifies relationships between pre-slaughter factors, body lesions, ham defects and carcass traits in pigs," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-14, May.
    9. Warnell, Katherine J.D. & Russell, Marc & Rhodes, Charles & Bagstad, Kenneth J. & Olander, Lydia P. & Nowak, David J. & Poudel, Rajendra & Glynn, Pierre D. & Hass, Julie L. & Hirabayashi, Satoshi & In, 2020. "Testing ecosystem accounting in the United States: A case study for the Southeast," Ecosystem Services, Elsevier, vol. 43(C).
    10. Silvana Nisgoski & Joielan Xipaia dos Santos & Helena Cristina Vieira & Tawani Lorena Naide & Rafaela Stange & Washington Duarte Silva da Silva & Deivison Venicio Souza & Natally Celestino Gama & Márc, 2023. "Provenance Identification of Leaves and Nuts of Bertholletia excelsa Bonpl by Near-Infrared Spectroscopy and Color Parameters for Sustainable Extraction," Sustainability, MDPI, vol. 15(21), pages 1-15, November.
    11. Alessandro Bonadonna & Stefano Duglio & Luigi Bollani & Giovanni Peira, 2022. "Mountain Food Products: A Cluster Analysis Based on Young Consumers’ Perceptions," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    12. Cyrille Bassolo Baki & Joost Wellens & Farid Traoré & Sié Palé & Bakary Djaby & Apolline Bambara & Nguyen T. T. Thao & Missa Hié & Bernard Tychon, 2022. "Assessment of Hydro-Agricultural Infrastructures in Burkina Faso by Using Multiple Correspondence Analysis Approach," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    13. Gennifer Meldrum & Dunja Mijatović & Wilfredo Rojas & Juana Flores & Milton Pinto & Grover Mamani & Eleuterio Condori & David Hilaquita & Helga Gruberg & Stefano Padulosi, 2018. "Climate change and crop diversity: farmers’ perceptions and adaptation on the Bolivian Altiplano," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 703-730, April.
    14. Claire H Luby & Julie C Dawson & Irwin L Goldman, 2016. "Assessment and Accessibility of Phenotypic and Genotypic Diversity of Carrot (Daucus carota L. var. sativus) Cultivars Commercially Available in the United States," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    15. Hugo R Oliveira & Diana Tomás & Manuela Silva & Susana Lopes & Wanda Viegas & Maria Manuela Veloso, 2016. "Genetic Diversity and Population Structure in Vicia faba L. Landraces and Wild Related Species Assessed by Nuclear SSRs," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
    16. Bottaro, Giorgia & Liagre, Ludwig & Pettenella, Davide, 2024. "The Forest Sector in EU Member States' National Recovery and Resilience Plans: a preliminary analysis," Forest Policy and Economics, Elsevier, vol. 160(C).
    17. Han, Albert Tonghoon & Daniels, Thomas L. & Kim, Chaeri, 2022. "Managing urban growth in the wake of climate change: Revisiting greenbelt policy in the US," Land Use Policy, Elsevier, vol. 112(C).
    18. Julio E Peironcely & Theo Reijmers & Leon Coulier & Andreas Bender & Thomas Hankemeier, 2011. "Understanding and Classifying Metabolite Space and Metabolite-Likeness," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-14, December.
    19. Elio Romano & Rocco Roma & Flavio Tidona & Giorgio Giraffa & Andrea Bragaglio, 2021. "Dairy Farms and Life Cycle Assessment (LCA): The Allocation Criterion Useful to Estimate Undesirable Products," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
    20. Donghui Xu & Gautam Bisht & Zeli Tan & Eva Sinha & Alan V. Vittorio & Tian Zhou & Valeriy Y. Ivanov & L. Ruby Leung, 2024. "Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:3:d:10.1007_s10584-023-03498-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.