IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007496.html
   My bibliography  Save this article

Recurrent somatic mutations reveal new insights into consequences of mutagenic processes in cancer

Author

Listed:
  • Miranda D Stobbe
  • Gian A Thun
  • Andrea Diéguez-Docampo
  • Meritxell Oliva
  • Justin P Whalley
  • Emanuele Raineri
  • Ivo G Gut

Abstract

The sheer size of the human genome makes it improbable that identical somatic mutations at the exact same position are observed in multiple tumours solely by chance. The scarcity of cancer driver mutations also precludes positive selection as the sole explanation. Therefore, recurrent mutations may be highly informative of characteristics of mutational processes. To explore the potential, we use recurrence as a starting point to cluster >2,500 whole genomes of a pan-cancer cohort. We describe each genome with 13 recurrence-based and 29 general mutational features. Using principal component analysis we reduce the dimensionality and create independent features. We apply hierarchical clustering to the first 18 principal components followed by k-means clustering. We show that the resulting 16 clusters capture clinically relevant cancer phenotypes. High levels of recurrent substitutions separate the clusters that we link to UV-light exposure and deregulated activity of POLE from the one representing defective mismatch repair, which shows high levels of recurrent insertions/deletions. Recurrence of both mutation types characterizes cancer genomes with somatic hypermutation of immunoglobulin genes and the cluster of genomes exposed to gastric acid. Low levels of recurrence are observed for the cluster where tobacco-smoke exposure induces mutagenesis and the one linked to increased activity of cytidine deaminases. Notably, the majority of substitutions are recurrent in a single tumour type, while recurrent insertions/deletions point to shared processes between tumour types. Recurrence also reveals susceptible sequence motifs, including TT[C>A]TTT and AAC[T>G]T for the POLE and ‘gastric-acid exposure’ clusters, respectively. Moreover, we refine knowledge of mutagenesis, including increased C/G deletion levels in general for lung tumours and specifically in midsize homopolymer sequence contexts for microsatellite instable tumours. Our findings are an important step towards the development of a generic cancer diagnostic test for clinical practice based on whole-genome sequencing that could replace multiple diagnostics currently in use.Author summary: Mutations found in the DNA of a tumour are expected to be largely unique to each tumour as there are three billion places in the DNA that can be mutated. However, despite these odds, in a cancer study with 2,583 participants covering 37 tumour types we observe in total over a million non-unique mutations. Based on this observation, we hypothesize that these mutations can be highly informative of the biological processes that caused them. Using characteristics of these non-unique mutations and general statistics like the total number of mutations, we classify the tumours into 16 groups. These groups not only delineate various mutational processes, but also characterize them in more detail. Moreover, we can link the groups to several clinically actionable phenotypes. Our work is a crucial step towards the development of a generic and personalized cancer diagnostic test that only uses the mutations found in the tumour.

Suggested Citation

  • Miranda D Stobbe & Gian A Thun & Andrea Diéguez-Docampo & Meritxell Oliva & Justin P Whalley & Emanuele Raineri & Ivo G Gut, 2019. "Recurrent somatic mutations reveal new insights into consequences of mutagenic processes in cancer," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-27, November.
  • Handle: RePEc:plo:pcbi00:1007496
    DOI: 10.1371/journal.pcbi.1007496
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007496
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007496&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Radhakrishnan Sabarinathan & Loris Mularoni & Jordi Deu-Pons & Abel Gonzalez-Perez & Núria López-Bigas, 2016. "Nucleotide excision repair is impaired by binding of transcription factors to DNA," Nature, Nature, vol. 532(7598), pages 264-267, April.
    2. Xose S. Puente & Silvia Beà & Rafael Valdés-Mas & Neus Villamor & Jesús Gutiérrez-Abril & José I. Martín-Subero & Marta Munar & Carlota Rubio-Pérez & Pedro Jares & Marta Aymerich & Tycho Baumann & Ren, 2015. "Non-coding recurrent mutations in chronic lymphocytic leukaemia," Nature, Nature, vol. 526(7574), pages 519-524, October.
    3. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    4. Eran Segal & Yvonne Fondufe-Mittendorf & Lingyi Chen & AnnChristine Thåström & Yair Field & Irene K. Moore & Ji-Ping Z. Wang & Jonathan Widom, 2006. "A genomic code for nucleosome positioning," Nature, Nature, vol. 442(7104), pages 772-778, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karin Kauer & Sandra Pärnpuu & Liina Talgre & Viacheslav Eremeev & Anne Luik, 2021. "Soil Particulate and Mineral-Associated Organic Matter Increases in Organic Farming under Cover Cropping and Manure Addition," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    2. Surun, Clément & Drechsler, Martin, 2018. "Effectiveness of Tradable Permits for the Conservation of Metacommunities With Two Competing Species," Ecological Economics, Elsevier, vol. 147(C), pages 189-196.
    3. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    4. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    5. Alexander Platzer & Thomas Nussbaumer & Thomas Karonitsch & Josef S Smolen & Daniel Aletaha, 2019. "Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    6. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    7. Ji-Ping Wang & Yvonne Fondufe-Mittendorf & Liqun Xi & Guei-Feng Tsai & Eran Segal & Jonathan Widom, 2008. "Preferentially Quantized Linker DNA Lengths in Saccharomyces cerevisiae," PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-10, September.
    8. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Joy R. Petway & Yu-Pin Lin & Rainer F. Wunderlich, 2019. "Analyzing Opinions on Sustainable Agriculture: Toward Increasing Farmer Knowledge of Organic Practices in Taiwan-Yuanli Township," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    10. Anne-Sophie Lambert & Catherine Legrand & Sophie Cès & Thérèse Van Durme & Jean Macq, 2019. "Evaluating case management as a complex intervention: Lessons for the future," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-18, October.
    11. Pabitra Joshi & Guriqbal Singh Dhillon & Yaotian Gao & Amandeep Kaur & Justin Wheeler & Jianli Chen, 2024. "An Optimal Model to Improve Genomic Prediction for Protein Content and Test Weight in a Diverse Spring Wheat Panel," Agriculture, MDPI, vol. 14(3), pages 1-16, February.
    12. Nichiforel, Liviu & Keary, Kevin & Deuffic, Philippe & Weiss, Gerhard & Thorsen, Bo Jellesmark & Winkel, Georg & Avdibegović, Mersudin & Dobšinská, Zuzana & Feliciano, Diana & Gatto, Paola & Gorriz Mi, 2018. "How private are Europe’s private forests? A comparative property rights analysis," Land Use Policy, Elsevier, vol. 76(C), pages 535-552.
    13. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    14. Cholez, Celia & Pauly, Olivier & Mahdad, Maral & Mehrabi, Sepide & Giagnocavo, Cynthia & Bijman, Jos, 2023. "Heterogeneity of inter-organizational collaborations in agrifood chain sustainability-oriented innovations," Agricultural Systems, Elsevier, vol. 212(C).
    15. Munten, Pauline & Swaen, Valérie & Vanhamme, Joëlle, 2024. "Exploring rebound effects in Access-Based services (ABS)," Journal of Business Research, Elsevier, vol. 182(C).
    16. Loc, Ho Huu & Park, Edward & Thu, Tran Ngoc & Diep, Nguyen Thi Hong & Can, Nguyen Trong, 2021. "An enhanced analytical framework of participatory GIS for ecosystem services assessment applied to a Ramsar wetland site in the Vietnam Mekong Delta," Ecosystem Services, Elsevier, vol. 48(C).
    17. Urdinola, Piedad & Bejarano, Valeria & Espinosa, Oscar & Do Nascimento Silva, Pedro Luis, 2024. "Estudio de caracterización socioeconómica y demográficade los afiliados al régimen subsidiado de salud, Colombia 2019-2020," Ensayos de Economía 21227, Universidad Nacional de Colombia Sede Medellín.
    18. Florence Jacquet & A Aboul-Naga & Bernard Hubert, 2020. "The contribution of ARIMNet to address livestock systems resilience in the Mediterranean region," Post-Print hal-03625860, HAL.
    19. Zing Tsung-Yeh Tsai & Shin-Han Shiu & Huai-Kuang Tsai, 2015. "Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-22, August.
    20. Juan García-Quezada & Ricardo Musule-Lagunes & José Angel Prieto-Ruíz & Daniel José Vega-Nieva & Artemio Carrillo-Parra, 2022. "Evaluation of Four Types of Kilns Used to Produce Charcoal from Several Tree Species in Mexico," Energies, MDPI, vol. 16(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.