IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v169y2021i3d10.1007_s10584-021-03261-3.html
   My bibliography  Save this article

Attribution of typhoon-induced torrential precipitation in Central Vietnam, October 2020

Author

Listed:
  • Linh N. Luu

    (Royal Netherlands Meteorological Institute (KNMI)
    Vietnam Institute of Meteorology Hydrology and Climate Change)

  • Paolo Scussolini

    (Royal Netherlands Meteorological Institute (KNMI)
    Vrije Universiteit Amsterdam)

  • Sarah Kew

    (Royal Netherlands Meteorological Institute (KNMI))

  • Sjoukje Philip

    (Royal Netherlands Meteorological Institute (KNMI))

  • Mugni Hadi Hariadi

    (Royal Netherlands Meteorological Institute (KNMI))

  • Robert Vautard

    (Université Paris-Saclay and IPSL)

  • Khiem Mai

    (National Centre for Hydro - Meteorological Forecasting)

  • Thang Vu

    (Vietnam Institute of Meteorology Hydrology and Climate Change)

  • Kien Ba Truong

    (Vietnam Institute of Meteorology Hydrology and Climate Change)

  • Friederike Otto

    (Imperial College London)

  • Gerard Schrier

    (Royal Netherlands Meteorological Institute (KNMI))

  • Maarten K. Aalst

    (University of Twente
    Red Cross Red Crescent Climate Centre
    Columbia University)

  • Geert Jan Oldenborgh

    (Royal Netherlands Meteorological Institute (KNMI))

Abstract

In October 2020, Central Vietnam was struck by heavy rain resulting from a sequence of 5 tropical depressions and typhoons. The immense amount of water led to extensive flooding and landslides that killed more than 200 people, injured more than 500 people, and caused direct damages valued at approximately 1.2 billion USD. Here, we quantify how the intensity of the precipitation leading to such exceptional impacts is attributable to anthropogenic climate change. First, we define the event as the regional maximum of annual maximum 15-day average rainfall (Rx15day). We then analyse the trend in Rx15day over Central Vietnam from the observations and simulations in the PRIMAVERA and CORDEX-CORE ensembles, which pass our evaluation tests, by applying the generalised extreme value (GEV) distribution in which location and scale parameters exponentially covary with increasing global temperatures. Combining these observations and model results, we find that the 2020 event, occurring about once every 80 years (at least 17 years), has not changed in either probability of occurrence (a factor 1.0, ranging from 0.4 to 2.4) or intensity (0%, ranging from −8 to +8%) in the present climate in comparison with early-industrial climate. This implies that the effect of human-induced climate change contributing to this persistent extreme rainfall event is small compared to natural variability. However, given the scale of damage of this hazard, our results underline that more investment in disaster risk reduction for this type of rainfall-induced flood hazard is of importance, even independent of the effect of anthropogenic climate change. Moreover, as both observations and model simulations will be extended with the passage of time, we encourage more climate change impact investigations on the extreme in the future that help adaptation and mitigation plans and raise awareness in the country.

Suggested Citation

  • Linh N. Luu & Paolo Scussolini & Sarah Kew & Sjoukje Philip & Mugni Hadi Hariadi & Robert Vautard & Khiem Mai & Thang Vu & Kien Ba Truong & Friederike Otto & Gerard Schrier & Maarten K. Aalst & Geert , 2021. "Attribution of typhoon-induced torrential precipitation in Central Vietnam, October 2020," Climatic Change, Springer, vol. 169(3), pages 1-22, December.
  • Handle: RePEc:spr:climat:v:169:y:2021:i:3:d:10.1007_s10584-021-03261-3
    DOI: 10.1007/s10584-021-03261-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03261-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03261-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott A. Kulp & Benjamin H. Strauss, 2019. "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Nga Thi Thanh Pham & Quang Hong Nguyen & Anh Duc Ngo & Hang Thi Thu Le & Cong Tien Nguyen, 2018. "Investigating the impacts of typhoon-induced floods on the agriculture in the central region of Vietnam by using hydrological models and satellite data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 189-204, May.
    3. Christina M. Patricola & Michael F. Wehner, 2018. "Anthropogenic influences on major tropical cyclone events," Nature, Nature, vol. 563(7731), pages 339-346, November.
    4. Luke J. Harrington, 2017. "Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change," Climatic Change, Springer, vol. 141(4), pages 641-654, April.
    5. Aglaé Jézéquel & Vivian Dépoues & Hélène Guillemot & Mélodie Trolliet & Jean-Paul Vanderlinden & Pascal Yiou, 2018. "Behind the veil of extreme event attribution," Climatic Change, Springer, vol. 149(3), pages 367-383, August.
    6. Scott A. Kulp & Benjamin H. Strauss, 2019. "Author Correction: New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-2, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arun Rana & Qinhan Zhu & Annette Detken & Karina Whalley & Christelle Castet, 2022. "Strengthening climate-resilient development and transformation in Viet Nam," Climatic Change, Springer, vol. 170(1), pages 1-23, January.
    2. Xueyang Liu & Xiaoxing Liu, 2021. "Can Financial Development Curb Carbon Emissions? Empirical Test Based on Spatial Perspective," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    3. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    4. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    5. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    6. Amar Causevic & Matthew LoCastro & Dharish David & Sujeetha Selvakkumaran & Ã…sa Gren, 2021. "Financing resilience efforts to confront future urban and sea-level rise flooding: Are coastal megacities in Association of Southeast Asian Nations doing enough?," Environment and Planning B, , vol. 48(5), pages 989-1010, June.
    7. Katerina Trepekli & Thomas Balstrøm & Thomas Friborg & Bjarne Fog & Albert N. Allotey & Richard Y. Kofie & Lasse Møller-Jensen, 2022. "UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 423-451, August.
    8. Laura Bakkensen & Quynh Nguyen & Toan Phan & Paul Schuler, 2023. "Charting the Course: How Does Information about Sea Level Rise Affect the Willingness to Migrate?," Working Paper 23-09, Federal Reserve Bank of Richmond.
    9. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    10. Mengmeng Cui & Filipa Ferreira & Tze Kwan Fung & José Saldanha Matos, 2021. "Tale of Two Cities: How Nature-Based Solutions Help Create Adaptive and Resilient Urban Water Management Practices in Singapore and Lisbon," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    11. Simon Merschroth & Alessio Miatto & Steffi Weyand & Hiroki Tanikawa & Liselotte Schebek, 2020. "Lost Material Stock in Buildings due to Sea Level Rise from Global Warming: The Case of Fiji Islands," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    12. Zhiyuan Wang & Felix Bachofer & Jonas Koehler & Juliane Huth & Thorsten Hoeser & Mattia Marconcini & Thomas Esch & Claudia Kuenzer, 2022. "Spatial Modelling and Prediction with the Spatio-Temporal Matrix: A Study on Predicting Future Settlement Growth," Land, MDPI, vol. 11(8), pages 1-23, July.
    13. Gaurav Tripathi & Arvind Chandra Pandey & Bikash Ranjan Parida, 2022. "Flood Hazard and Risk Zonation in North Bihar Using Satellite-Derived Historical Flood Events and Socio-Economic Data," Sustainability, MDPI, vol. 14(3), pages 1-26, January.
    14. Johnella Bradshaw & Simron Jit Singh & Su-Yin Tan & Tomer Fishman & Kristen Pott, 2020. "GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    15. Clinton J. Andrews, 2020. "Toward a research agenda on climate‐related migration," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 331-341, April.
    16. Yi Chen & Tao Liu & Ruishan Chen & Mengke Zhao, 2020. "Influence of the Built Environment on Community Flood Resilience: Evidence from Nanjing City, China," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    17. Jayur Madhusudan Mehta & Elizabeth L. Chamberlain, 2023. "Cultural-ecosystem resilience is vital yet under-considered in coastal restoration," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    18. Sayeda Sabrina Ali & Md. Raju Ahmad & Jalal Uddin Mohammad Shoaib & Mohammad Aliuzzaman Sheik & Mohammad Imam Hoshain & Rebecca L. Hall & Katrina A. Macintosh & Paul N. Williams, 2021. "Pandemic or Environmental Socio-Economic Stressors Which Have Greater Impact on Food Security in the Barishal Division of Bangladesh: Initial Perspectives from Agricultural Officers and Farmers," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    19. Mark Lubell & Mark Stacey & Michelle A. Hummel, 2021. "Collective action problems and governance barriers to sea-level rise adaptation in San Francisco Bay," Climatic Change, Springer, vol. 167(3), pages 1-25, August.
    20. Andreas Braun & Gebhard Warth & Felix Bachofer & Tram Thi Quynh Bui & Hao Tran & Volker Hochschild, 2020. "Changes in the Building Stock of Da Nang between 2015 and 2017," Data, MDPI, vol. 5(2), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:169:y:2021:i:3:d:10.1007_s10584-021-03261-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.