IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53413-z.html
   My bibliography  Save this article

A global assessment of mangrove soil organic carbon sources and implications for blue carbon credit

Author

Listed:
  • Jingfan Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shuchai Gan

    (Chinese Academy of Sciences)

  • Pingjian Yang

    (Chinese Research Academy of Environmental Sciences)

  • Jinge Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xingyun Huang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Han Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hua He

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Neil Saintilan

    (Macquarie University)

  • Christian J. Sanders

    (Southern Cross University)

  • Faming Wang

    (Chinese Academy of Sciences
    Hainan University
    Southern Marine Science and Engineering Guangdong Laboratory)

Abstract

Mangroves can retain both autochthonous and allochthonous marine and/or terrestrial organic carbon (OC) in sediments. Accurate quantification of these OC sources is essential for the proper allocation of blue C credits. Here, we conduct a global-scale analysis of sediments autochthonous and allochthonous OC contributions in estuarine and marine mangroves using stable isotopes. Globally, mangrove-derived autochthonous OC was the main contributor to estuarine and marine mangrove top-meter soil organic carbon (SOC) (49% and 62%, respectively). Less marine allochthonous OC (21%) was deposited than terrestrial allochthonous OC (30%) in estuarine mangrove sediments. Estuarine mangroves accumulated more SOC in sediments than marine mangroves (282 ± 8.1 Mg C ha−1 and 250 ± 5.0 Mg C ha−1, respectively), primarily due to the additional terrestrial OC inputs. Globally, marine mangroves held 67% of the total mangrove SOC, reaching 3025 ± 345 Tg C, while 1502 ± 154 Tg C was stored in estuarine mangrove sediments. The findings emphasize the substantial influence of coastal environmental settings on OC contributions, underlining the necessity of accurate OC source quantification for the effective allocation of blue carbon credits.

Suggested Citation

  • Jingfan Zhang & Shuchai Gan & Pingjian Yang & Jinge Zhou & Xingyun Huang & Han Chen & Hua He & Neil Saintilan & Christian J. Sanders & Faming Wang, 2024. "A global assessment of mangrove soil organic carbon sources and implications for blue carbon credit," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53413-z
    DOI: 10.1038/s41467-024-53413-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53413-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53413-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sipesihle Booi & Syden Mishi & Oddgeir Andersen, 2022. "Ecosystem Services: A Systematic Review of Provisioning and Cultural Ecosystem Services in Estuaries," Sustainability, MDPI, vol. 14(12), pages 1-29, June.
    2. Scott A. Kulp & Benjamin H. Strauss, 2019. "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Xiaoguang Ouyang & Shing Yip Lee, 2020. "Improved estimates on global carbon stock and carbon pools in tidal wetlands," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Scott A. Kulp & Benjamin H. Strauss, 2019. "Author Correction: New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-2, December.
    5. André S. Rovai & Robert R. Twilley & Edward Castañeda-Moya & Pablo Riul & Miguel Cifuentes-Jara & Marilyn Manrow-Villalobos & Paulo A. Horta & José C. Simonassi & Alessandra L. Fonseca & Paulo R. Pagl, 2018. "Global controls on carbon storage in mangrove soils," Nature Climate Change, Nature, vol. 8(6), pages 534-538, June.
    6. Faming Wang & Xiaoliang Lu & Christian J. Sanders & Jianwu Tang, 2019. "Author Correction: Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    7. Faming Wang & Xiaoliang Lu & Christian J. Sanders & Jianwu Tang, 2019. "Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueyang Liu & Xiaoxing Liu, 2021. "Can Financial Development Curb Carbon Emissions? Empirical Test Based on Spatial Perspective," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    2. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    3. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    4. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    5. Amar Causevic & Matthew LoCastro & Dharish David & Sujeetha Selvakkumaran & Ã…sa Gren, 2021. "Financing resilience efforts to confront future urban and sea-level rise flooding: Are coastal megacities in Association of Southeast Asian Nations doing enough?," Environment and Planning B, , vol. 48(5), pages 989-1010, June.
    6. Katerina Trepekli & Thomas Balstrøm & Thomas Friborg & Bjarne Fog & Albert N. Allotey & Richard Y. Kofie & Lasse Møller-Jensen, 2022. "UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 423-451, August.
    7. Chang, Yuyuan & He, Wen & Mi, Lin, 2024. "Climate risk and payout flexibility around the world," Journal of Banking & Finance, Elsevier, vol. 166(C).
    8. Laura Bakkensen & Quynh Nguyen & Toan Phan & Paul Schuler, 2023. "Charting the Course: How Does Information about Sea Level Rise Affect the Willingness to Migrate?," Working Paper 23-09, Federal Reserve Bank of Richmond.
    9. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    10. Mary Bryan Barksdale & Christopher J. Hein & Matthew L. Kirwan, 2023. "Shoreface erosion counters blue carbon accumulation in transgressive barrier-island systems," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    11. Mengmeng Cui & Filipa Ferreira & Tze Kwan Fung & José Saldanha Matos, 2021. "Tale of Two Cities: How Nature-Based Solutions Help Create Adaptive and Resilient Urban Water Management Practices in Singapore and Lisbon," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    12. Simon Merschroth & Alessio Miatto & Steffi Weyand & Hiroki Tanikawa & Liselotte Schebek, 2020. "Lost Material Stock in Buildings due to Sea Level Rise from Global Warming: The Case of Fiji Islands," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    13. Zezheng Liu & Sergio Fagherazzi & Qiang He & Olivier Gourgue & Junhong Bai & Xinhui Liu & Chiyuan Miao & Zhan Hu & Baoshan Cui, 2024. "A global meta-analysis on the drivers of salt marsh planting success and implications for ecosystem services," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Zhiyuan Wang & Felix Bachofer & Jonas Koehler & Juliane Huth & Thorsten Hoeser & Mattia Marconcini & Thomas Esch & Claudia Kuenzer, 2022. "Spatial Modelling and Prediction with the Spatio-Temporal Matrix: A Study on Predicting Future Settlement Growth," Land, MDPI, vol. 11(8), pages 1-23, July.
    15. Gaurav Tripathi & Arvind Chandra Pandey & Bikash Ranjan Parida, 2022. "Flood Hazard and Risk Zonation in North Bihar Using Satellite-Derived Historical Flood Events and Socio-Economic Data," Sustainability, MDPI, vol. 14(3), pages 1-26, January.
    16. Kendall Valentine & Ellen R. Herbert & David C. Walters & Yaping Chen & Alexander J. Smith & Matthew L. Kirwan, 2023. "Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Johnella Bradshaw & Simron Jit Singh & Su-Yin Tan & Tomer Fishman & Kristen Pott, 2020. "GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    18. Clinton J. Andrews, 2020. "Toward a research agenda on climate‐related migration," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 331-341, April.
    19. Yi Chen & Tao Liu & Ruishan Chen & Mengke Zhao, 2020. "Influence of the Built Environment on Community Flood Resilience: Evidence from Nanjing City, China," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    20. Andrea Mah & Daniel Chapman & Ezra Markowitz & Brian Lickel, 2024. "Public preferences for sea-level rise adaptation vary depending on strategy, community, and perceiver characteristics," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(8), pages 1-34, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53413-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.