IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1472-d735750.html
   My bibliography  Save this article

Flood Hazard and Risk Zonation in North Bihar Using Satellite-Derived Historical Flood Events and Socio-Economic Data

Author

Listed:
  • Gaurav Tripathi

    (Department of Geoinformatics, School of Natural Resource and Management, Central University of Jharkhand, Ranchi 835222, India)

  • Arvind Chandra Pandey

    (Department of Geoinformatics, School of Natural Resource and Management, Central University of Jharkhand, Ranchi 835222, India)

  • Bikash Ranjan Parida

    (Department of Geoinformatics, School of Natural Resource and Management, Central University of Jharkhand, Ranchi 835222, India)

Abstract

North Bihar is one of the most flood-affected regions of India. Frequent flooding caused significant loss of life and severe economic damages. In this study, hydroclimatic conditions and historical flood events during the period of 2001 to 2020 were coupled over different basins in North Bihar. The main objective of this study is to assess the severity of floods by estimating flood hazards, vulnerability and risk in North Bihar. The uniqueness of this study is to assess flood risk at the village level as no such study was performed earlier. Other thematic data, namely, land-use and drainage networks, were also utilised with flood maps to validate the severity of the event. MOD09A1 satellite data (during 2001–2020) derived indices were used to derive inundation extents and flood frequency. Socio-economic vulnerability (SEV) was derived based on seven census parameters (i.e., population density, house-hold density, literacy rate, agricultural labour, and cultivator, total male, and female) and coupled with flood hazard to derive flood risk over the study region. The study exhibited that a total ~34% of the geographical area of North Bihar was inundated in the last 20 years and the maximum flood extent was seen in 2020. Flood risk map exhibited that ~7%, ~8%, ~13%, ~4%, and ~2% of the geographical area was mapped under Very High, High, Moderate, Low, and Very Low categories, respectively. The 2770 and 3535 number of villages was categorized under Very High and High flood risk zone which are located in north-central and central-western regions. These findings can be applied to distinguish and classify areas of various risk zones to assist in flood mitigation and management activities.

Suggested Citation

  • Gaurav Tripathi & Arvind Chandra Pandey & Bikash Ranjan Parida, 2022. "Flood Hazard and Risk Zonation in North Bihar Using Satellite-Derived Historical Flood Events and Socio-Economic Data," Sustainability, MDPI, vol. 14(3), pages 1-26, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1472-:d:735750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott A. Kulp & Benjamin H. Strauss, 2019. "Author Correction: New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-2, December.
    2. Scott A. Kulp & Benjamin H. Strauss, 2019. "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Günter Blöschl & Julia Hall & Alberto Viglione & Rui A. P. Perdigão & Juraj Parajka & Bruno Merz & David Lun & Berit Arheimer & Giuseppe T. Aronica & Ardian Bilibashi & Miloň Boháč & Ognjen Bonacci & , 2019. "Changing climate both increases and decreases European river floods," Nature, Nature, vol. 573(7772), pages 108-111, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arvind Chandra Pandey & Kavita Kaushik & Bikash Ranjan Parida, 2022. "Google Earth Engine for Large-Scale Flood Mapping Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra Basin," Sustainability, MDPI, vol. 14(7), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luke J. Jenkins & Ivan D. Haigh & Paula Camus & Douglas Pender & Jenny Sansom & Rob Lamb & Hachem Kassem, 2023. "The temporal clustering of storm surge, wave height, and high sea level exceedances around the UK coastline," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1761-1797, January.
    2. Alberto Alesina & Marco Tabellini, 2024. "The Political Effects of Immigration: Culture or Economics?," Journal of Economic Literature, American Economic Association, vol. 62(1), pages 5-46, March.
    3. Xueyang Liu & Xiaoxing Liu, 2021. "Can Financial Development Curb Carbon Emissions? Empirical Test Based on Spatial Perspective," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    4. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    5. Stephanie A. Siehr & Minmin Sun & José Luis Aranda Nucamendi, 2022. "Blue‐green infrastructure for climate resilience and urban multifunctionality in Chinese cities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    6. Michaël Goujon & Olivier Santoni & Laurent Wagner, 2022. "The Physical Vulnerability to Climate Change Index computed at the sub-national level," Working Papers hal-03672203, HAL.
    7. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    8. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    9. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    10. Yong Jee KIM & Brigitte WALDORF & Juan SESMERO, 2020. "Relocation, Retreat, and the Rising Sea Level: A Simulation of Aggregate Outcomes in Escambia County, Florida," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 51, pages 31-43.
    11. Amar Causevic & Matthew LoCastro & Dharish David & Sujeetha Selvakkumaran & Ã…sa Gren, 2021. "Financing resilience efforts to confront future urban and sea-level rise flooding: Are coastal megacities in Association of Southeast Asian Nations doing enough?," Environment and Planning B, , vol. 48(5), pages 989-1010, June.
    12. Katerina Trepekli & Thomas Balstrøm & Thomas Friborg & Bjarne Fog & Albert N. Allotey & Richard Y. Kofie & Lasse Møller-Jensen, 2022. "UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 423-451, August.
    13. Arun Rana & Qinhan Zhu & Annette Detken & Karina Whalley & Christelle Castet, 2022. "Strengthening climate-resilient development and transformation in Viet Nam," Climatic Change, Springer, vol. 170(1), pages 1-23, January.
    14. Bera, Subhas & Das, Arup & Mazumder, Taraknath, 2021. "Spatial dimensions of dichotomous adaptive responses to natural hazards in coastal districts of West Bengal, India," Land Use Policy, Elsevier, vol. 108(C).
    15. Jingfan Zhang & Shuchai Gan & Pingjian Yang & Jinge Zhou & Xingyun Huang & Han Chen & Hua He & Neil Saintilan & Christian J. Sanders & Faming Wang, 2024. "A global assessment of mangrove soil organic carbon sources and implications for blue carbon credit," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Laura Bakkensen & Quynh Nguyen & Toan Phan & Paul Schuler, 2023. "Charting the Course: How Does Information about Sea Level Rise Affect the Willingness to Migrate?," Working Paper 23-09, Federal Reserve Bank of Richmond.
    17. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    18. Mohamed A. Abdelhafez & Hussam N. Mahmoud & Bruce R. Ellingwood, 2024. "Adjusting to the reality of sea level rise: reshaping coastal communities through resilience-informed adaptation," Climatic Change, Springer, vol. 177(7), pages 1-20, July.
    19. Mengmeng Cui & Filipa Ferreira & Tze Kwan Fung & José Saldanha Matos, 2021. "Tale of Two Cities: How Nature-Based Solutions Help Create Adaptive and Resilient Urban Water Management Practices in Singapore and Lisbon," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    20. Simon Merschroth & Alessio Miatto & Steffi Weyand & Hiroki Tanikawa & Liselotte Schebek, 2020. "Lost Material Stock in Buildings due to Sea Level Rise from Global Warming: The Case of Fiji Islands," Sustainability, MDPI, vol. 12(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1472-:d:735750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.