IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p834-d312218.html
   My bibliography  Save this article

Lost Material Stock in Buildings due to Sea Level Rise from Global Warming: The Case of Fiji Islands

Author

Listed:
  • Simon Merschroth

    (Material Flow Management and Resource Economy, Institute IWAR, Technische Universität Darmstadt, Franziska-Braun-Strasse 7, 64287 Darmstadt, Germany
    Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan)

  • Alessio Miatto

    (School of Forestry & Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA)

  • Steffi Weyand

    (Material Flow Management and Resource Economy, Institute IWAR, Technische Universität Darmstadt, Franziska-Braun-Strasse 7, 64287 Darmstadt, Germany)

  • Hiroki Tanikawa

    (Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan)

  • Liselotte Schebek

    (Material Flow Management and Resource Economy, Institute IWAR, Technische Universität Darmstadt, Franziska-Braun-Strasse 7, 64287 Darmstadt, Germany)

Abstract

This study developed a methodology to estimate the amount of construction material in coastal buildings which are lost due to climate change-induced sea level rise. The Republic of Fiji was chosen as a case study; sea level rise is based on predictions by the Intergovernmental Panel on Climate Change for the years 2050 and 2100. This study combines the concept of a geographic information system based digital inundation analysis with the concept of a material stock analysis. The findings show that about 4.5% of all existing buildings on Fiji will be inundated by 2050 because of an expected global sea level rise of 0.22 m (scenario 1) and 6.2% by 2100 for a sea level rise of 0.63 m (scenario 2). The number of buildings inundated by 2050 is equivalent to 40% of the average number of new constructed buildings in Fiji Islands in a single year. Overall, the amount of materials present in buildings which will be inundated by 2050 is 900,000 metric tons (815,650 metric tons of concrete, 52,100 metric tons of timber, and 31,680 metric tons of steel). By 2100, this amount is expected to grow to 1,151,000 metric tons (1,130,160 metric tons of concrete, 69,760 metric tons of timber, and 51,320 metric tons of steel). The results shall contribute in enhancing urban planning, climate change adaptation strategies, and the estimation of future demolition flows in small island developing states.

Suggested Citation

  • Simon Merschroth & Alessio Miatto & Steffi Weyand & Hiroki Tanikawa & Liselotte Schebek, 2020. "Lost Material Stock in Buildings due to Sea Level Rise from Global Warming: The Case of Fiji Islands," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:834-:d:312218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher D. Golden & Edward H. Allison & William W. L. Cheung & Madan M. Dey & Benjamin S. Halpern & Douglas J. McCauley & Matthew Smith & Bapu Vaitla & Dirk Zeller & Samuel S. Myers, 2016. "Nutrition: Fall in fish catch threatens human health," Nature, Nature, vol. 534(7607), pages 317-320, June.
    2. Scott A. Kulp & Benjamin H. Strauss, 2019. "Author Correction: New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-2, December.
    3. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    4. Dasgupta, Susmita & Laplante, Benoit & Meisner, Craig & Wheeler, David & Jianping Yan, 2007. "The impact of sea level rise on developing countries : a comparative analysis," Policy Research Working Paper Series 4136, The World Bank.
    5. repec:bla:devpol:v:25:y:2007:i:2:p:243-264 is not listed on IDEAS
    6. Barbier,Edward B., 2015. "Climate change impacts on rural poverty in low-elevation coastal zones," Policy Research Working Paper Series 7475, The World Bank.
    7. Thi Cuc Nguyen & Tomer Fishman & Alessio Miatto & Hiroki Tanikawa, 2019. "Estimating the Material Stock of Roads: The Vietnamese Case Study," Journal of Industrial Ecology, Yale University, vol. 23(3), pages 663-673, June.
    8. Samuel Mackay & Rebecca Brown & Makelesi Gonelevu & Netatua Pelesikoti & Talei Kocovanua & Rebecca Iaken & Florence Iautu & Luisa Tuiafitu-Malolo & Sione Fulivai & Ma’asi Lepa & Brendan Mackey, 2019. "Overcoming barriers to climate change information management in small island developing states: lessons from pacific SIDS," Climate Policy, Taylor & Francis Journals, vol. 19(1), pages 125-138, January.
    9. Scott A. Kulp & Benjamin H. Strauss, 2019. "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    10. Hiroki Tanikawa & Tomer Fishman & Keijiro Okuoka & Kenji Sugimoto, 2015. "The Weight of Society Over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 778-791, October.
    11. Jessica Mercer & Ilan Kelman & Björn Alfthan & Tiina Kurvits, 2012. "Ecosystem-Based Adaptation to Climate Change in Caribbean Small Island Developing States: Integrating Local and External Knowledge," Sustainability, MDPI, vol. 4(8), pages 1-25, August.
    12. Hiroki Tanikawa & Shunsuke Managi & Cherry Myo Lwin, 2014. "Estimates of Lost Material Stock of Buildings and Roads Due to the Great East Japan Earthquake and Tsunami," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 421-431, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    2. Simron Jit. Singh & Marina Fischer-Kowalski & Marian Chertow, 2020. "Introduction: The Metabolism of Islands," Sustainability, MDPI, vol. 12(22), pages 1-8, November.
    3. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    4. Nagisa Shiiba & Priyatma Singh & Dhrishna Charan & Kushaal Raj & Jack Stuart & Arpana Pratap & Miko Maekawa, 2023. "Climate change and coastal resiliency of Suva, Fiji: a holistic approach for measuring climate risk using the climate and ocean risk vulnerability index (CORVI)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-31, February.
    5. Franz Schug & David Frantz & Dominik Wiedenhofer & Helmut Haberl & Doris Virág & Sebastian van der Linden & Patrick Hostert, 2023. "High‐resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 110-124, February.
    6. Johnella Bradshaw & Simron Jit Singh & Su-Yin Tan & Tomer Fishman & Kristen Pott, 2020. "GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda," Sustainability, MDPI, vol. 12(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnella Bradshaw & Simron Jit Singh & Su-Yin Tan & Tomer Fishman & Kristen Pott, 2020. "GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    2. Marie-Noëlle WOILLEZ & Femi Emmanuel IKUEMONISAN & Vitalis Chidi OZEBO & Philip S.J. MINDERHOUD & Pietro TEATINI, 2023. "A scoping review of the vulnerability of Nigeria's coastland to sea-level rise and the contribution of land subsidence," Working Paper af68695f-dcee-4c1e-9daf-6, Agence française de développement.
    3. Mathew E. Hauer & Dean Hardy & Scott A. Kulp & Valerie Mueller & David J. Wrathall & Peter U. Clark, 2021. "Assessing population exposure to coastal flooding due to sea level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    5. Luke J. Jenkins & Ivan D. Haigh & Paula Camus & Douglas Pender & Jenny Sansom & Rob Lamb & Hachem Kassem, 2023. "The temporal clustering of storm surge, wave height, and high sea level exceedances around the UK coastline," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1761-1797, January.
    6. Alberto Alesina & Marco Tabellini, 2024. "The Political Effects of Immigration: Culture or Economics?," Journal of Economic Literature, American Economic Association, vol. 62(1), pages 5-46, March.
    7. Xueyang Liu & Xiaoxing Liu, 2021. "Can Financial Development Curb Carbon Emissions? Empirical Test Based on Spatial Perspective," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    8. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    9. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    10. Stephanie A. Siehr & Minmin Sun & José Luis Aranda Nucamendi, 2022. "Blue‐green infrastructure for climate resilience and urban multifunctionality in Chinese cities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    11. Michaël Goujon & Olivier Santoni & Laurent Wagner, 2022. "The Physical Vulnerability to Climate Change Index computed at the sub-national level," Working Papers hal-03672203, HAL.
    12. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    13. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    14. Shuntian Xu & Huaxuan Wang & Xin Tian & Tao Wang & Hiroki Tanikawa, 2022. "From efficiency to equity: Changing patterns of China's regional transportation systems from an in‐use steel stocks perspective," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 548-561, April.
    15. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    16. Yong Jee KIM & Brigitte WALDORF & Juan SESMERO, 2020. "Relocation, Retreat, and the Rising Sea Level: A Simulation of Aggregate Outcomes in Escambia County, Florida," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 51, pages 31-43.
    17. Amar Causevic & Matthew LoCastro & Dharish David & Sujeetha Selvakkumaran & Ã…sa Gren, 2021. "Financing resilience efforts to confront future urban and sea-level rise flooding: Are coastal megacities in Association of Southeast Asian Nations doing enough?," Environment and Planning B, , vol. 48(5), pages 989-1010, June.
    18. Rebecca Jo Stormes Newman & Claudia Capitani & Colin Courtney-Mustaphi & Jessica Paula Rose Thorn & Rebecca Kariuki & Charis Enns & Robert Marchant, 2020. "Integrating Insights from Social-Ecological Interactions into Sustainable Land Use Change Scenarios for Small Islands in the Western Indian Ocean," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    19. Katerina Trepekli & Thomas Balstrøm & Thomas Friborg & Bjarne Fog & Albert N. Allotey & Richard Y. Kofie & Lasse Møller-Jensen, 2022. "UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 423-451, August.
    20. Chang, Yuyuan & He, Wen & Mi, Lin, 2024. "Climate risk and payout flexibility around the world," Journal of Banking & Finance, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:834-:d:312218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.