IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v168y2021i3d10.1007_s10584-021-03228-4.html
   My bibliography  Save this article

Natural variability vs forced signal in the 2015–2019 Central American drought

Author

Listed:
  • Salvatore Pascale

    (University of Bologna)

  • Sarah B. Kapnick

    (National Oceanic and Atmospheric Administration)

  • Thomas L. Delworth

    (National Oceanic and Atmospheric Administration)

  • Hugo G. Hidalgo

    (University of Costa Rica)

  • William F. Cooke

    (National Oceanic and Atmospheric Administration)

Abstract

The recent multi-year 2015–2019 drought after a multi-decadal drying trend over Central America raises the question of whether anthropogenic climate change (ACC) played a role in exacerbating these events. While the occurrence of the 2015–2019 drought in Central America has been asserted to be associated with ACC, we lack an assessment of natural vs anthropogenic contributions. Here, we use five different large ensembles—including high-resolution ensembles (i.e., 0.5∘ horizontally)—to estimate the contribution of ACC to the probability of occurrence of the 2015–2019 event and the recent multi-decadal trend. The comparison of ensembles forced with natural and natural plus anthropogenic forcing suggests that the recent 40-year trend is likely associated with internal climate variability. However, the 2015–2019 rainfall deficit has been made more likely by ACC. The synthesis of the results from model ensembles supports the notion of a significant increase, by a factor of four, over the last century for the 2015–2019 meteorological drought to occur because of ACC. All the model results further suggest that, under intermediate and high emission scenarios, the likelihood of similar drought events will continue to increase substantially over the next decades.

Suggested Citation

  • Salvatore Pascale & Sarah B. Kapnick & Thomas L. Delworth & Hugo G. Hidalgo & William F. Cooke, 2021. "Natural variability vs forced signal in the 2015–2019 Central American drought," Climatic Change, Springer, vol. 168(3), pages 1-21, October.
  • Handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03228-4
    DOI: 10.1007/s10584-021-03228-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03228-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03228-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anji Seth & Sara Rauscher & Maisa Rojas & Alessandra Giannini & Suzana Camargo, 2011. "Enhanced spring convective barrier for monsoons in a warmer world?," Climatic Change, Springer, vol. 104(2), pages 403-414, January.
    2. Daniel L. Swain & Baird Langenbrunner & J. David Neelin & Alex Hall, 2018. "Increasing precipitation volatility in twenty-first-century California," Nature Climate Change, Nature, vol. 8(5), pages 427-433, May.
    3. Salvatore Pascale & William R. Boos & Simona Bordoni & Thomas L. Delworth & Sarah B. Kapnick & Hiroyuki Murakami & Gabriel A. Vecchi & Wei Zhang, 2017. "Weakening of the North American monsoon with global warming," Nature Climate Change, Nature, vol. 7(11), pages 806-812, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    2. Cooley, Savannah & Jenkins, Amber & Schaeffer, Blake & Bormann, Kat J. & Abdallah, Adel & Melton, Forrest & Granger, Stephanie & Graczyk, Indrani, 2022. "Paths to research-driven decision making in the realms of environment and water," Technology in Society, Elsevier, vol. 70(C).
    3. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    4. Shijie Zhou & Ping Huang & Lin Wang & Kaiming Hu & Gang Huang & Peng Hu, 2024. "Robust changes in global subtropical circulation under greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Xuezhi Tan & Xinxin Wu & Zeqin Huang & Jianyu Fu & Xuejin Tan & Simin Deng & Yaxin Liu & Thian Yew Gan & Bingjun Liu, 2023. "Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Kamiar Mohaddes & Ryan N C Ng & M Hashem Pesaran & Mehdi Raissi & Jui-Chung Yang, 2023. "Climate change and economic activity: evidence from US states," Oxford Open Economics, Oxford University Press, vol. 2, pages 28-46.
    7. Mohammad Ahsan Uddin & ASM Maksud Kamal & Shamsuddin Shahid & Eun-Sung Chung, 2020. "Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    8. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Cai, Qingyin & Çakır, Metin & Beatty, Timothy & Park, Timothy A., 2022. "Drought and the Specialty Crops Production in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322530, Agricultural and Applied Economics Association.
    10. Sarah E Diringer & Morgan Shimabuku & Heather Cooley, 2020. "Economic evaluation of stormwater capture and its multiple benefits in California," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-18, March.
    11. François Salanié & Vera Zaporozhets, 2022. "Water allocation, crop choice, and priority services," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 24(1), pages 140-158, February.
    12. Bruno, Ellen M. & Jessoe, Katrina, 2021. "Missing markets: Evidence on agricultural groundwater demand from volumetric pricing," Journal of Public Economics, Elsevier, vol. 196(C).
    13. Mingyu Park & Nathaniel C. Johnson & Thomas L. Delworth, 2024. "The driving of North American climate extremes by North Pacific stationary-transient wave interference," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Thorne, James H. & Boynton, Ryan M. & Hollander, Allan D. & Whitney, Jason P. & Shapiro, Kristen D., 2021. "2020 Critical Update to Caltrans Wildfire Vulnerability Analysis," Institute of Transportation Studies, Working Paper Series qt4723h7j8, Institute of Transportation Studies, UC Davis.
    15. Huanghe Gu & Guiling Wang & Zhongbo Yu & Rui Mei, 2012. "Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model," Climatic Change, Springer, vol. 114(2), pages 301-317, September.
    16. Brianda Hernandez Rosales & Alexandra Lutz, 2023. "Assessing the Feasibility of Rooftop Rainwater Harvesting for Food Production in Northwestern Arizona on the Hualapai Indian Reservation," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    17. L. Mariotti & I. Diallo & E. Coppola & F. Giorgi, 2014. "Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections," Climatic Change, Springer, vol. 125(1), pages 53-65, July.
    18. Rachel James & Richard Washington, 2013. "Changes in African temperature and precipitation associated with degrees of global warming," Climatic Change, Springer, vol. 117(4), pages 859-872, April.
    19. José C. Fernández-Alvarez & Albenis Pérez-Alarcón & Jorge Eiras-Barca & Stefan Rahimi & Raquel Nieto & Luis Gimeno, 2023. "Projected changes in atmospheric moisture transport contributions associated with climate warming in the North Atlantic," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Tamara S. Wilson & Nathan D. Van Schmidt & Ruth Langridge, 2020. "Land-Use Change and Future Water Demand in California’s Central Coast," Land, MDPI, vol. 9(9), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03228-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.