IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v166y2021i1d10.1007_s10584-021-03052-w.html
   My bibliography  Save this article

Prolonged Siberian heat of 2020 almost impossible without human influence

Author

Listed:
  • Andrew Ciavarella

    (Met Office Hadley Centre)

  • Daniel Cotterill

    (Met Office Hadley Centre)

  • Peter Stott

    (Met Office Hadley Centre)

  • Sarah Kew

    (Royal Netherlands Meteorological Institute (KNMI))

  • Sjoukje Philip

    (Royal Netherlands Meteorological Institute (KNMI))

  • Geert Jan Oldenborgh

    (Royal Netherlands Meteorological Institute (KNMI))

  • Amalie Skålevåg

    (Deutscher Wetterdienst (DWD))

  • Philip Lorenz

    (Deutscher Wetterdienst (DWD))

  • Yoann Robin

    (Météo France)

  • Friederike Otto

    (University of Oxford)

  • Mathias Hauser

    (ETH Zürich)

  • Sonia I. Seneviratne

    (ETH Zürich)

  • Flavio Lehner

    (ETH Zürich)

  • Olga Zolina

    (IGE/UGA
    P.P.Shirshov Institute of Oceanology)

Abstract

Over the first half of 2020, Siberia experienced the warmest period from January to June since records began and on the 20th of June the weather station at Verkhoyansk reported 38 °C, the highest daily maximum temperature recorded north of the Arctic Circle. We present a multi-model, multi-method analysis on how anthropogenic climate change affected the probability of these events occurring using both observational datasets and a large collection of climate models, including state-of-the-art higher-resolution simulations designed for attribution and many from the latest generation of coupled ocean-atmosphere models, CMIP6. Conscious that the impacts of heatwaves can span large differences in spatial and temporal scales, we focus on two measures of the extreme Siberian heat of 2020: January to June mean temperatures over a large Siberian region and maximum daily temperatures in the vicinity of the town of Verkhoyansk. We show that human-induced climate change has dramatically increased the probability of occurrence and magnitude of extremes in both of these (with lower confidence for the probability for Verkhoyansk) and that without human influence the temperatures widely experienced in Siberia in the first half of 2020 would have been practically impossible.

Suggested Citation

  • Andrew Ciavarella & Daniel Cotterill & Peter Stott & Sarah Kew & Sjoukje Philip & Geert Jan Oldenborgh & Amalie Skålevåg & Philip Lorenz & Yoann Robin & Friederike Otto & Mathias Hauser & Sonia I. Sen, 2021. "Prolonged Siberian heat of 2020 almost impossible without human influence," Climatic Change, Springer, vol. 166(1), pages 1-18, May.
  • Handle: RePEc:spr:climat:v:166:y:2021:i:1:d:10.1007_s10584-021-03052-w
    DOI: 10.1007/s10584-021-03052-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03052-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03052-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudia Tebaldi & Julie Arblaster, 2014. "Pattern scaling: Its strengths and limitations, and an update on the latest model simulations," Climatic Change, Springer, vol. 122(3), pages 459-471, February.
    2. Luke J. Harrington & Friederike E. L. Otto, 2020. "Reconciling theory with the reality of African heatwaves," Nature Climate Change, Nature, vol. 10(9), pages 796-798, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Makarov, I. & Chernokulsky, A., 2023. "Impacts of climate change on the Russian economy: Ranking of regions by adaptation needs," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 145-202.
    3. Juan Antonio Rivera & Paola A. Arias & Anna A. Sörensson & Mariam Zachariah & Clair Barnes & Sjoukje Philip & Sarah Kew & Robert Vautard & Gerbrand Koren & Izidine Pinto & Maja Vahlberg & Roop Singh &, 2023. "2022 early-summer heatwave in Southern South America: 60 times more likely due to climate change," Climatic Change, Springer, vol. 176(8), pages 1-23, August.
    4. Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Kai Kornhuber & Corey Lesk & Carl F. Schleussner & Jonas Jägermeyr & Peter Pfleiderer & Radley M. Horton, 2023. "Risks of synchronized low yields are underestimated in climate and crop model projections," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Sihan Li & Friederike E. L. Otto, 2022. "The role of human-induced climate change in heavy rainfall events such as the one associated with Typhoon Hagibis," Climatic Change, Springer, vol. 172(1), pages 1-19, May.
    7. Vera Kuklina & Oleg Sizov & Elena Rasputina & Irina Bilichenko & Natalia Krasnoshtanova & Viktor Bogdanov & Andrey N. Petrov, 2022. "Fires on Ice: Emerging Permafrost Peatlands Fire Regimes in Russia’s Subarctic Taiga," Land, MDPI, vol. 11(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Luke J. Harrington & Kristie L. Ebi & David J. Frame & Friederike E. L. Otto, 2022. "Integrating attribution with adaptation for unprecedented future heatwaves," Climatic Change, Springer, vol. 172(1), pages 1-7, May.
    3. Matthew A. Thomas & Ting Lin, 2018. "A dual model for emulation of thermosteric and dynamic sea-level change," Climatic Change, Springer, vol. 148(1), pages 311-324, May.
    4. Timothy Osborn & Craig Wallace & Ian Harris & Thomas Melvin, 2016. "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation," Climatic Change, Springer, vol. 134(3), pages 353-369, February.
    5. Christopher W. Callahan & Justin S. Mankin, 2022. "National attribution of historical climate damages," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    6. Sarah Syed & Tracey L. O’Sullivan & Karen P. Phillips, 2022. "Extreme Heat and Pregnancy Outcomes: A Scoping Review of the Epidemiological Evidence," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
    7. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Claudia Tebaldi & Michael F. Wehner, 2018. "Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5," Climatic Change, Springer, vol. 146(3), pages 349-361, February.
    9. Alessandro Dosio & Christopher Lennard & Jonathan Spinoni, 2022. "Projections of indices of daily temperature and precipitation based on bias-adjusted CORDEX-Africa regional climate model simulations," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    10. Akemi Tanaka & Kiyoshi Takahashi & Hideo Shiogama & Naota Hanasaki & Yoshimitsu Masaki & Akihiko Ito & Hibiki Noda & Yasuaki Hijioka & Seita Emori, 2017. "On the scaling of climate impact indicators with global mean temperature increase: a case study of terrestrial ecosystems and water resources," Climatic Change, Springer, vol. 141(4), pages 775-782, April.
    11. Yangyang Xu & Lei Lin, 2017. "Pattern scaling based projections for precipitation and potential evapotranspiration: sensitivity to composition of GHGs and aerosols forcing," Climatic Change, Springer, vol. 140(3), pages 635-647, February.
    12. Stacey E. Alexeeff & Doug Nychka & Stephan R. Sain & Claudia Tebaldi, 2018. "Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments," Climatic Change, Springer, vol. 146(3), pages 319-333, February.
    13. Jiang, Sijian & Deng, Xiangzheng & Liu, Gang & Zhang, Fan, 2021. "Climate change-induced economic impact assessment by parameterizing spatially heterogeneous CO2 distribution," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    14. Azaïs, Jean-Marc & Ribes, Aurélien, 2016. "Multivariate spline analysis for multiplicative models: Estimation, testing and application to climate change," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 38-53.
    15. Kotlikoff, Laurence & Kubler, Felix & Polbin, Andrey & Scheidegger, Simon, 2024. "Can today’s and tomorrow’s world uniformly gain from carbon taxation?," European Economic Review, Elsevier, vol. 168(C).
    16. Nigel Arnell & Simon Gosling, 2016. "The impacts of climate change on river flood risk at the global scale," Climatic Change, Springer, vol. 134(3), pages 387-401, February.
    17. Timothy Wilson & Ilan Noy, 2023. "Fifty years of peril: A comprehensive comparison of the impact of terrorism and disasters linked to natural hazards (1970–2019)," Global Policy, London School of Economics and Political Science, vol. 14(5), pages 647-662, November.
    18. Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    19. Timothy J. Osborn & Craig J. Wallace & Ian C. Harris & Thomas M. Melvin, 2016. "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation," Climatic Change, Springer, vol. 134(3), pages 353-369, February.
    20. Per Krusell & Tony Smith, 2022. "Climate Change Around the World," Cowles Foundation Discussion Papers 2342, Cowles Foundation for Research in Economics, Yale University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:166:y:2021:i:1:d:10.1007_s10584-021-03052-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.