IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v164y2021i3d10.1007_s10584-021-03012-4.html
   My bibliography  Save this article

Evaluation of historical CMIP6 model simulations and future projections of temperature and precipitation in Paraguay

Author

Listed:
  • Miguel A. Lovino

    (Universidad Nacional del Litoral)

  • María Josefina Pierrestegui

    (Universidad Nacional del Litoral)

  • Omar V. Müller

    (Universidad Nacional del Litoral)

  • Ernesto Hugo Berbery

    (University of Maryland)

  • Gabriela V. Müller

    (Universidad Nacional del Litoral)

  • Max Pasten

    (Universidad Nacional de Asunción)

Abstract

This study evaluates the ability of 19 models of CMIP phase 6 (CMIP6) to simulate Paraguay’s climate features. Historical multi-member simulations of single models and their multi-model ensembles are bias-corrected and evaluated with statistical metrics. Future projections of precipitation and temperature are generated with the ensembles for three integrated scenarios of socio-economic development and greenhouse gas emissions (SSP1–2.6, SSP2–4.5, and SSP5–8.5). The 19 models simulate well the observed mean temperature. The bias-corrected multi-model ensemble reaches the highest skill scores and accurately reproduces the mean spatial field and annual cycle. The bias-corrected multi-model ensemble of precipitation represents the annual cycle weakly, missing the sharp onset and decay of the South American Monsoon. Some individual models and the multi-model ensemble correctly reproduce the west-east gradient, although they underestimate its pronounced spatial variability. Ensembles of future simulations project that by 2100, the annual mean temperature will increase for the three scenarios. On average, the increases are almost 1.7 °C in the sustainable development and low emissions scenario (SSP1–2.6), 3 °C in the middle-of-the-road development and medium emissions scenario (SSP2–4.5), and 5.5 °C in the fossil-fueled development and high emissions scenario (SSP5–8.5). Models project a slight decrease in annual precipitation towards the northwest (less than 50 mm) and an increase towards the southeast (more than 200 mm). Paraguay’s humid eastern part is projected to have a small growth in temperature and an increase in precipitation. In contrast, the western arid Chaco region would experience a substantial increase in temperature, while rainfall would slightly decrease.

Suggested Citation

  • Miguel A. Lovino & María Josefina Pierrestegui & Omar V. Müller & Ernesto Hugo Berbery & Gabriela V. Müller & Max Pasten, 2021. "Evaluation of historical CMIP6 model simulations and future projections of temperature and precipitation in Paraguay," Climatic Change, Springer, vol. 164(3), pages 1-24, February.
  • Handle: RePEc:spr:climat:v:164:y:2021:i:3:d:10.1007_s10584-021-03012-4
    DOI: 10.1007/s10584-021-03012-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03012-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03012-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    2. E. M. Fischer & U. Beyerle & R. Knutti, 2013. "Robust spatially aggregated projections of climate extremes," Nature Climate Change, Nature, vol. 3(12), pages 1033-1038, December.
    3. Uribe Botero, Eduardo, 2015. "El cambio climático y sus efectos en la biodiversidad en América Latina," Documentos de Proyectos 39855, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isaza, Alejandra & Kay, Merlinde & Evans, Jason P. & Prasad, Abhnil & Bremner, Stephen, 2023. "Maximizing photovoltaic potential and minimizing costs in a future warmer climate: The role of atmospheric aerosols and greenhouse gas emissions," Renewable Energy, Elsevier, vol. 219(P2).
    2. Sakineh Khansalari & Atefeh Mohammadi, 2024. "Probabilistic projection of extreme precipitation changes over Iran by the CMIP6 multi-model ensemble," Climatic Change, Springer, vol. 177(7), pages 1-26, July.
    3. Isaac Kwesi Nooni & Daniel Fiifi T. Hagan & Guojie Wang & Waheed Ullah & Jiao Lu & Shijie Li & Mawuli Dzakpasu & Nana Agyemang Prempeh & Kenny T. C. Lim Kam Sian, 2021. "Future Changes in Simulated Evapotranspiration across Continental Africa Based on CMIP6 CNRM-CM6," IJERPH, MDPI, vol. 18(13), pages 1-17, June.
    4. Felipe Gateño & Pablo A. Mendoza & Nicolás Vásquez & Miguel Lagos-Zúñiga & Héctor Jiménez & Catalina Jerez & Ximena Vargas & Eduardo Rubio-Álvarez & Santiago Montserrat, 2024. "Screening CMIP6 models for Chile based on past performance and code genealogy," Climatic Change, Springer, vol. 177(6), pages 1-33, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rutger Dankers & Zbigniew W. Kundzewicz, 2020. "Grappling with uncertainties in physical climate impact projections of water resources," Climatic Change, Springer, vol. 163(3), pages 1379-1397, December.
    2. Bruce Hewitson & Katinka Waagsaether & Jan Wohland & Kate Kloppers & Teizeen Kara, 2017. "Climate information websites: an evolving landscape," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(5), September.
    3. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    4. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    5. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    6. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    7. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    8. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    10. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    12. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    13. Hamdi-Cherif, Meriem & Waisman, Henri & Guivarch, Céline & Hourcade, Jean-Charles, 2012. "Mitigation costs in second-best economies: time profile of emission reductions and sequencing of accompanying measures," Conference papers 332206, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    15. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    16. Jung-A Yang & Sooyoul Kim & Sangyoung Son & Nobuhito Mori & Hajime Mase, 2020. "Assessment of uncertainties in projecting future changes to extreme storm surge height depending on future SST and greenhouse gas concentration scenarios," Climatic Change, Springer, vol. 162(2), pages 425-442, September.
    17. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    18. Guo, Jinggang & Prestemon, Jeffrey & Johnston, Craig, 2023. "Forest market outlook in the Southern United States," Forest Policy and Economics, Elsevier, vol. 157(C).
    19. Fahad Saeed & Mansour Almazroui & Nazrul Islam & Mariam Saleh Khan, 2017. "Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1635-1647, July.
    20. Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:164:y:2021:i:3:d:10.1007_s10584-021-03012-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.