IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i2d10.1007_s10584-020-02850-y.html
   My bibliography  Save this article

Drought projection in the Indochina Region based on the optimal ensemble subset of CMIP5 models

Author

Listed:
  • Rattana Chhin

    (Kyoto University
    Institute of Technology of Cambodia
    Institute of Technology of Cambodia)

  • Chantha Oeurng

    (Institute of Technology of Cambodia)

  • Shigeo Yoden

    (Kyoto University
    Kyoto University)

Abstract

We explore future changes of temperature, precipitation, and drought characteristics in the Indochina Region (ICR) based on the optimal ensemble subset of global climate models (GCMs) of the Couple Model Intercomparison Project Phase 5 (CMIP5). The optimal ensemble subset is selected from 34 GCMs using an ensemble selection method by focusing on precipitation over ICR. Bias correction procedures for the optimal ensemble subset are examined for drought analysis in ICR. Based on the bias-corrected optimal ensemble subset, mean temperature in ICR is projected to increase around 1.1 °C (0.99 °C) in near future (2011–2040), 2.5 °C (1.8 °C) in mid future (2041–2070), and 4.3 °C (2.2 °C) in far future (2071–2100) time frames under representative concentration pathway 8.5 (RCP8.5) (RCP4.5) scenario. Mean precipitation decreases in the dry season and increases in the wet season. The 3-month Standardized Precipitation Evapotranspiration Index (SPEI-3) projects larger changes of drought characteristics than those of the 3-month Standardized Precipitation Index (SPI-3), especially quite large increases of drought duration, severity, and peak. Based on SPEI-3, the potential increase of severe drought hazard is expected in ICR in the far future period under both scenarios. The most drought-prone areas are detected over Thailand and Cambodia in which the drought characteristics are projected to expand to cover most parts of ICR in the mid and far future. The potentially dry condition over ICR is clearly depicted based on SPEI-3 with more reliable estimation after selecting the optimal ensemble subset and bias correction procedure.

Suggested Citation

  • Rattana Chhin & Chantha Oeurng & Shigeo Yoden, 2020. "Drought projection in the Indochina Region based on the optimal ensemble subset of CMIP5 models," Climatic Change, Springer, vol. 162(2), pages 687-705, September.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02850-y
    DOI: 10.1007/s10584-020-02850-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02850-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02850-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dae Jeong & Laxmi Sushama & M. Naveed Khaliq, 2014. "The role of temperature in drought projections over North America," Climatic Change, Springer, vol. 127(2), pages 289-303, November.
    2. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    3. Hao Guo & Anming Bao & Tie Liu & Felix Ndayisaba & Daming He & Alishir Kurban & Philippe De Maeyer, 2017. "Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product," Sustainability, MDPI, vol. 9(6), pages 1-21, May.
    4. Julia C. Hargreaves, 2010. "Skill and uncertainty in climate models," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(4), pages 556-564, July.
    5. Douglas Maraun & Theodore G. Shepherd & Martin Widmann & Giuseppe Zappa & Daniel Walton & José M. Gutiérrez & Stefan Hagemann & Ingo Richter & Pedro M. M. Soares & Alex Hall & Linda O. Mearns, 2017. "Towards process-informed bias correction of climate change simulations," Nature Climate Change, Nature, vol. 7(11), pages 764-773, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenya Li & Zulfiqar Ali & Tong Cui & Sadia Qamar & Muhammad Ismail & Amna Nazeer & Muhammad Faisal, 2022. "A comparative analysis of pre- and post-industrial spatiotemporal drought trends and patterns of Tibet Plateau using Sen slope estimator and steady-state probabilities of Markov Chain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 547-576, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    2. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    3. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Araneda-Cabrera, Ronnie J. & Bermúdez, María & Puertas, Jerónimo, 2021. "Assessment of the performance of drought indices for explaining crop yield variability at the national scale: Methodological framework and application to Mozambique," Agricultural Water Management, Elsevier, vol. 246(C).
    5. Corwin, D.L. & Scudiero, E. & Zaccaria, D., 2022. "Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation," Agricultural Water Management, Elsevier, vol. 269(C).
    6. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    7. Susanna Grasso & Pierluigi Claps & Daniele Ganora & Andrea Libertino, 2021. "A Web‐based Open‐source Geoinformation Tool for Regional Water Resources Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 675-687, January.
    8. -, 2015. "La economía del cambio climático en América Latina y el Caribe: paradojas y desafíos del desarrollo sostenible," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37310 edited by Cepal.
    9. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    10. Nguyen Hong Duc & Pankaj Kumar & Pham Phuong Lan & Tonni Agustiono Kurniawan & Khaled Mohamed Khedher & Ali Kharrazi & Osamu Saito & Ram Avtar, 2023. "Hydrochemical indices as a proxy for assessing land-use impacts on water resources: a sustainable management perspective and case study of Can Tho City, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2573-2615, July.
    11. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    12. Masupha, Teboho E. & Moeletsi, Mokhele E., 2020. "The use of Water Requirement Satisfaction Index for assessing agricultural drought on rain-fed maize, in the Luvuvhu River catchment, South Africa," Agricultural Water Management, Elsevier, vol. 237(C).
    13. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Sara Tokhi Arab & Tofael Ahamed, 2023. "Near-real-time drought monitoring and assessment for vineyard production on a regional scale with standard precipitation and vegetation indices using Landsat and CHIRPS datasets," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 591-614, June.
    15. Varsha Pandey & Prashant K Srivastava & Sudhir K Singh & George P. Petropoulos & Rajesh Kumar Mall, 2021. "Drought Identification and Trend Analysis Using Long-Term CHIRPS Satellite Precipitation Product in Bundelkhand, India," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    16. Christine M. Albano & Maureen I. McCarthy & Michael D. Dettinger & Stephanie A. McAfee, 2021. "Techniques for constructing climate scenarios for stress test applications," Climatic Change, Springer, vol. 164(3), pages 1-25, February.
    17. Tonggang Fu & Hongzhu Liang & Hui Gao & Jintong Liu, 2021. "The Taihang Mountain Region of North China is Experiencing A Significant Warming Trend," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    18. repec:fpr:2020cp:5(5 is not listed on IDEAS
    19. Azhgaliyeva, Dina & Rahut, Dil, 2022. "Promoting Green Buildings: Barriers, Solutions, and Policies," ADBI Working Papers 1331, Asian Development Bank Institute.
    20. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    21. Alessandro Dosio & Christopher Lennard & Jonathan Spinoni, 2022. "Projections of indices of daily temperature and precipitation based on bias-adjusted CORDEX-Africa regional climate model simulations," Climatic Change, Springer, vol. 170(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02850-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.