IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v155y2019i1d10.1007_s10584-019-02444-3.html
   My bibliography  Save this article

A multi-temporal analysis of streamflow using multiple CMIP5 GCMs in the Upper Ayerawaddy Basin, Myanmar

Author

Listed:
  • Uttam Ghimire

    (Asian Institute of Technology
    Regional Integrated Multi-Hazard Early Warning System for Africa and Asia (RIMES))

  • Mukand S. Babel

    (Asian Institute of Technology)

  • Sangam Shrestha

    (Asian Institute of Technology)

  • Govindarajalu Srinivasan

    (Regional Integrated Multi-Hazard Early Warning System for Africa and Asia (RIMES))

Abstract

In this study, bias-corrected daily rainfall data of eight global climate models (GCMs) was used as input for a hydrologic model (Hydrological Engineering Center - Hydrological Modeling System (HEC-HMS)) to simulate daily streamflow in the Upper Ayerawaddy River basin (UARB), Myanmar. Monthly, seasonal, annual, and decadal mean flows, calculated for the baseline (1975–2014), were compared with projections for future periods (2040s: 2021–2060 and 2080s: 2061–2100) under two Representative Concentration Pathways (RCP 4.5 and RCP 8.5). The spread of low flows (10th and 25th percentile of daily flows) and high flows (75th, 90th, and 100th percentiles) were analyzed for each period. The ensemble of GCMs indicates an increase in mean monthly (except in October and November), seasonal (except post-monsoon), annual, and decadal rainfalls and corresponding flows in the UARB. Future low flows are expected to have high variability while high flows are expected to have higher means than that of baseline. The density distribution analysis of baseline and future flows reveals that future periods are likely to experience an increase in the magnitude of mean flows but a decrease in variability. Rainfall extremes indicated by 1-day maximum rainfall, 5-day consecutive maximum rainfall, and the number of extreme rainfall days reveals frequent wetter extremes in the UARB under future climate conditions. Extreme floods, as estimated by the frequency analysis of daily flows, are also expected to become more frequent during the future periods. These changes in flows can be attributed solely to climate change since the analyses did not account impacts of possible land use change and water resources development in the UARB. This study is a good starting point to assess future flows, and further research is recommended to address the limitations of this study for improved understanding and assessments that will prove useful for planning purposes in the study area.

Suggested Citation

  • Uttam Ghimire & Mukand S. Babel & Sangam Shrestha & Govindarajalu Srinivasan, 2019. "A multi-temporal analysis of streamflow using multiple CMIP5 GCMs in the Upper Ayerawaddy Basin, Myanmar," Climatic Change, Springer, vol. 155(1), pages 59-79, July.
  • Handle: RePEc:spr:climat:v:155:y:2019:i:1:d:10.1007_s10584-019-02444-3
    DOI: 10.1007/s10584-019-02444-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02444-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02444-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tobias Vetter & Julia Reinhardt & Martina Flörke & Ann Griensven & Fred Hattermann & Shaochun Huang & Hagen Koch & Ilias G. Pechlivanidis & Stefan Plötner & Ousmane Seidou & Buda Su & R. Willem Vervoo, 2017. "Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins," Climatic Change, Springer, vol. 141(3), pages 419-433, April.
    2. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    3. Mendelsohn, Robert & Dinar, Ariel & Williams, Larry, 2006. "The distributional impact of climate change on rich and poor countries," Environment and Development Economics, Cambridge University Press, vol. 11(2), pages 159-178, April.
    4. Tran Ty & Kengo Sunada & Yutaka Ichikawa & Satoru Oishi, 2012. "Scenario-based Impact Assessment of Land Use/Cover and Climate Changes on Water Resources and Demand: A Case Study in the Srepok River Basin, Vietnam—Cambodia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1387-1407, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Febi Dwirahmadi & Shannon Rutherford & Dung Phung & Cordia Chu, 2019. "Understanding the Operational Concept of a Flood-Resilient Urban Community in Jakarta, Indonesia, from the Perspectives of Disaster Risk Reduction, Climate Change Adaptation and Development Agencies," IJERPH, MDPI, vol. 16(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vimal Mishra & Harsh Shah & M. Rocío Rivas López & Anastasia Lobanova & Valentina Krysanova, 2020. "Does comprehensive evaluation of hydrological models influence projected changes of mean and high flows in the Godavari River basin?," Climatic Change, Springer, vol. 163(3), pages 1187-1205, December.
    2. Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    3. Reynolds, Travis & Kolodinsky, Jane & Murray, Byron, 2012. "Consumer preferences and willingness to pay for compact fluorescent lighting: Policy implications for energy efficiency promotion in Saint Lucia," Energy Policy, Elsevier, vol. 41(C), pages 712-722.
    4. Shanshan Wen & Buda Su & Yanjun Wang & Jianqing Zhai & Hemin Sun & Ziyan Chen & Jinlong Huang & Anqian Wang & Tong Jiang, 2020. "Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China," Climatic Change, Springer, vol. 163(3), pages 1207-1226, December.
    5. Mofoluwawo Esther Omoniyi, 2020. "Sensitizing Nigerian Citizens on the Effects of Climate Change: Challenges for Social Studies Curriculum Planners and Implementers," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 4(9), pages 699-703, September.
    6. Alejandro Lopez-Feldman, 2013. "Climate change, agriculture, and poverty: A household level analysis for rural Mexico," Economics Bulletin, AccessEcon, vol. 33(2), pages 1126-1139.
    7. Nicole A. MATHYS & Jaime DE MELO, 2010. "Trade and Climate Change: The Challenges Ahead," Working Papers P14, FERDI.
    8. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    9. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    10. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    11. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    12. Shaochun Huang & Harsh Shah & Bibi S. Naz & Narayan Shrestha & Vimal Mishra & Prasad Daggupati & Uttam Ghimire & Tobias Vetter, 2020. "Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins," Climatic Change, Springer, vol. 163(3), pages 1143-1164, December.
    13. Jonghyun Yoo & Robert Mendelsohn, 2018. "Sensitivity Of Mitigation To The Optimal Global Temperature: An Experiment With Dice," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-8, May.
    14. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    15. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    16. Jew Das & Alin Treesa & N. V. Umamahesh, 2018. "Modelling Impacts of Climate Change on a River Basin: Analysis of Uncertainty Using REA & Possibilistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4833-4852, December.
    17. Li-Chi Chiang & Indrajeet Chaubey & Nien-Ming Hong & Yu-Pin Lin & Tao Huang, 2012. "Implementation of BMP Strategies for Adaptation to Climate Change and Land Use Change in a Pasture-Dominated Watershed," IJERPH, MDPI, vol. 9(10), pages 1-31, October.
    18. Channing Arndt & Felix Asante & James Thurlow, 2015. "Implications of Climate Change for Ghana’s Economy," Sustainability, MDPI, vol. 7(6), pages 1-18, June.
    19. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    20. Jawid, Asadullah & Khadjavi, Menusch, 2019. "Adaptation to climate change in Afghanistan: Evidence on the impact of external interventions," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 64-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:155:y:2019:i:1:d:10.1007_s10584-019-02444-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.