IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v149y2018i2d10.1007_s10584-018-2221-3.html
   My bibliography  Save this article

Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach

Author

Listed:
  • Maria Belyaeva

    (Leibniz Institute of Agricultural Development in Transition Economies (IAMO))

  • Raushan Bokusheva

    (The ZHAW Zurich University of Applied Sciences)

Abstract

Using recent advances in statistical crop yield modelling and a unique dataset consisting of yield time series for Russian regions over the period from 1955 to 2012, the study investigates the potential impact of climate change (CC) on the productivity of the three most important grains. Holding current grain growing areas fixed, the aggregate productivity of the three grains is predicted to decrease by 6.7% in 2046–2065 and increase by 2.6% in 2081–2100 compared to 1971–2000 under the most optimistic representative emission concentration pathway (RCP). Based on the projections for the three other RCPs, the aggregate productivity of the three studied crops is assessed to decrease by 18.0, 7.9 and 26.0% in the medium term and by 31.2, 25.9 and 55.4% by the end of the century. Our results indicate that CC might have a positive effect on winter wheat, spring wheat and spring barley productivity in a number of regions in the Northern and Siberian parts of Russia. However, due to the highly damaging CC impact on grain production in the most productive regions located in the South of the country, the overall impact tends to be negative. Therefore, a shift of agricultural production to the Northern regions of the country could reduce the negative impact of CC on grain production only to a limited extent. More vigorous adaptation measures are required to maintain current grain production volumes in Russia under CC.

Suggested Citation

  • Maria Belyaeva & Raushan Bokusheva, 2018. "Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach," Climatic Change, Springer, vol. 149(2), pages 205-217, July.
  • Handle: RePEc:spr:climat:v:149:y:2018:i:2:d:10.1007_s10584-018-2221-3
    DOI: 10.1007/s10584-018-2221-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2221-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2221-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Chatzopoulos & Christian Lippert, 2015. "Adaptation and Climate Change Impacts: A Structural Ricardian Analysis of Farm Types in Germany," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(2), pages 537-554, June.
    2. Frances C. Moore & David B. Lobell, 2014. "Adaptation potential of European agriculture in response to climate change," Nature Climate Change, Nature, vol. 4(7), pages 610-614, July.
    3. Ariel Ortiz-Bobea & Richard E. Just, 2013. "Modeling the Structure of Adaptation in Climate Change Impact Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 244-251.
    4. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    5. Michael A Trueblood & Carlos Arnade, 2001. "Crop Yield Convergence: How Russia's Yield Performance Has Compared to Global Yield Leaders," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 43(2), pages 59-81, July.
    6. Liefert, William & Liefert, Olga, 2015. "Russia's Potential to Increase Grain Production by Expanding Area," 2015 Conference, August 9-14, 2015, Milan, Italy 212045, International Association of Agricultural Economists.
    7. Christoph Müller & Richard D. Robertson, 2014. "Projecting future crop productivity for global economic modeling," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 37-50, January.
    8. Michael J. Roberts & Wolfram Schlenker & Jonathan Eyer, 2013. "Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 236-243.
    9. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    10. Schierhorn, Florian & Müller, Daniel & Prishchepov, Alexander V. & Faramarzi, Monireh & Balmann, Alfons, 2014. "The potential of Russia to increase its wheat production through cropland expansion and intensification," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 3(3-4), pages 133-141.
    11. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    12. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svanidze, Miranda & Götz, Linde, 2019. "Determinants of spatial market efficiency of grain markets in Russia," Food Policy, Elsevier, vol. 89(C).
    2. Hannah Bradley & Serena Stein, 2022. "Climate opportunism and values of change on the Arctic agricultural frontier," Economic Anthropology, Wiley Blackwell, vol. 9(2), pages 207-222, June.
    3. Andrei Kirilenko & Nikolai Dronin, 2022. "Recent grain production boom in Russia in historical context," Climatic Change, Springer, vol. 171(3), pages 1-19, April.
    4. Slaboch, Josef & Čechura, Lukáš, 2020. "Land Pricing Model: Price Re-evaluation Due to the Erosion and Climate Change Effects," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 10(3), December.
    5. Denitsa Angelova & Jan Käbel, 2019. "Weather Volatility and Production Efficiency," Sustainability, MDPI, vol. 11(24), pages 1-12, December.
    6. Sjulgård, Hanna & Keller, Thomas & Garland, Gina & Colombi, Tino, 2023. "Relationships between weather and yield anomalies vary with crop type and latitude in Sweden," Agricultural Systems, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zbw:iamodp:253788 is not listed on IDEAS
    2. Belyaeva, Maria & Bokusheva, Raushan, 2017. "Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach," IAMO Discussion Papers 253788, Institute of Agricultural Development in Transition Economies (IAMO).
    3. Belyaeva, Maria & Bokusheva, Raushan, 2017. "Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach [Wird der Klimawandel der russischen Getreideproduktion nutzen oder schaden? Statistische ," IAMO Discussion Papers 161, Leibniz Institute of Agricultural Development in Transition Economies (IAMO).
    4. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    5. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    6. Massetti, Emanuele & Mendelsohn, Robert & Chonabayashi, Shun, 2016. "How well do degree days over the growing season capture the effect of climate on farmland values?," Energy Economics, Elsevier, vol. 60(C), pages 144-150.
    7. Wallace E. Huffman & Yu Jin & Zheng Xu, 2018. "The economic impacts of technology and climate change: New evidence from U.S. corn yields," Agricultural Economics, International Association of Agricultural Economists, vol. 49(4), pages 463-479, July.
    8. Cui, X., 2018. "Adaptation to Climate Change: Evidence from US Acreage Response," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277094, International Association of Agricultural Economists.
    9. Charlotte Fabri & Michele Moretti & Steven Van Passel, 2022. "On the (ir)relevance of heatwaves in climate change impacts on European agriculture," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    10. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    11. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    12. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
    13. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    14. Ortiz-­Bobea, Ariel, 2013. "Understanding Temperature and Moisture Interactions in the Economics of Climate Change Impacts and Adaptation on Agriculture," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150435, Agricultural and Applied Economics Association.
    15. Arellano Gonzalez, Jesus, 2018. "Estimating climate change damages in data scarce and non-competitive settings: a novel version of the Ricardian approach with an application to Mexico," 2018 Annual Meeting, August 5-7, Washington, D.C. 274010, Agricultural and Applied Economics Association.
    16. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    17. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    18. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    19. Kaixing Huang & Qianqian Hong, 2024. "The impact of global warming on obesity," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(3), pages 1-32, September.
    20. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    21. Wang, Di & Zhang, Peng & Chen, Shuai & Zhang, Ning, 2024. "Adaptation to temperature extremes in Chinese agriculture, 1981 to 2010," Journal of Development Economics, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:149:y:2018:i:2:d:10.1007_s10584-018-2221-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.