IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v141y2017i4d10.1007_s10584-017-1904-5.html
   My bibliography  Save this article

Association between temperature and precipitation with dryland wheat yield in northwest of Iran

Author

Listed:
  • Mohammad Kheiri

    (Shahid Beheshti University, G.C.)

  • Saeid Soufizadeh

    (Shahid Beheshti University, G.C.)

  • Abdolali Ghaffari

    (West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO)

  • Majid AghaAlikhani

    (Tarbiat Modares University)

  • Ali Eskandari

    (Nuclear Science and Technology Research Institutes, Nuclear Agriculture Research School)

Abstract

Precipitation and temperature are two main climatic factors that influence crop productivity in arid and semi-arid areas. Study of the variability in these variables is thus important especially under dryland farming. In the present study, we evaluated the relationship between minimum, maximum, and mean temperatures; precipitation; and dryland wheat yield in northwest of Iran. The association between long-term weather data and dryland wheat yield for the time period bracketing 1990 and 2004 was investigated in seven stations (Ahar, Tabriz, Maragheh, Myaneh, Urmia, Khoy, and Makou) homogenously distributed over the study region. Aridity index (AI) was also calculated and its relationship with wheat yield was studied. Results showed that AI significantly decreased in the whole region (except for Urmia) with the highest variation in Maragheh and Myaneh. Increase in temperature was the major contributing factor to the increasing AI. Association between weather variables and dryland wheat yield at annual, seasonal, and monthly scales showed different results. At seasonal scale, spring was the main season affecting wheat yield. Also, at monthly scale, January, April, and May had more important role in wheat yield variation compared to the other months. The association between dryland wheat yield and weather variables was stronger in Maragheh and Myaneh. At the end, it was concluded that wheat yield was more affected by the variability in the climate in East Azerbaijan compared to that in West Azerbaijan.

Suggested Citation

  • Mohammad Kheiri & Saeid Soufizadeh & Abdolali Ghaffari & Majid AghaAlikhani & Ali Eskandari, 2017. "Association between temperature and precipitation with dryland wheat yield in northwest of Iran," Climatic Change, Springer, vol. 141(4), pages 703-717, April.
  • Handle: RePEc:spr:climat:v:141:y:2017:i:4:d:10.1007_s10584-017-1904-5
    DOI: 10.1007/s10584-017-1904-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-1904-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-1904-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Passioura, John, 2006. "Increasing crop productivity when water is scarce--from breeding to field management," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 176-196, February.
    2. Fulco Ludwig & Stephen Milroy & Senthold Asseng, 2009. "Impacts of recent climate change on wheat production systems in Western Australia," Climatic Change, Springer, vol. 92(3), pages 495-517, February.
    3. Yau, Sui-Kwong & Nimah, Musa & Farran, Mohamad, 2011. "Early sowing and irrigation to increase barley yields and water use efficiency in Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 98(12), pages 1776-1781, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Navvab Haji Hassani Asl & Farhad Farah Vash & Mohsen Roshdi & Bahram Mir Shekari & Mehdi Gaffari, 2024. "The effect of exogenous application of salicylic acid and ascorbic acid on forage quality and yield of maize (Zea mays L.) under water deficit conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(3), pages 142-153.
    2. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    3. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach," IJERPH, MDPI, vol. 17(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
    2. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    3. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    4. Tron, Stefania & Bodner, Gernot & Laio, Francesco & Ridolfi, Luca & Leitner, Daniel, 2015. "Can diversity in root architecture explain plant water use efficiency? A modeling study," Ecological Modelling, Elsevier, vol. 312(C), pages 200-210.
    5. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    6. Owusu–Kodua, Derrick & Micheels, Eric & Brown, Bill, 2017. "Pr - The Effect Of Entreprenurial Orientation On Crop Portfolio Choice: Results From A Student Simulation," 21st Congress, Edinburgh, Scotland, July 2-7, 2017 345779, International Farm Management Association.
    7. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    8. Zhao, Guoqing & Mu, Yan & Wang, Yanhui & Wang, Li, 2022. "Magnetization and oxidation of irrigation water to improve winter wheat (Triticum aestivum L.) production and water-use efficiency," Agricultural Water Management, Elsevier, vol. 259(C).
    9. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    10. Oliver, Yvette M. & Robertson, Michael J. & Weeks, Cameron, 2010. "A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 98(2), pages 291-300, December.
    11. Andrew L. Fletcher & Chao Chen & Noboru Ota & Roger A. Lawes & Yvette M. Oliver, 2020. "Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?," Climatic Change, Springer, vol. 159(3), pages 347-364, April.
    12. Paredes, Paula & Rodrigues, Gonçalo C. & Cameira, Maria do Rosário & Torres, Maria Odete & Pereira, Luis S., 2017. "Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 132-143.
    13. Senthold Asseng & Maria Travasso & Fulco Ludwig & Graciela Magrin, 2013. "Has climate change opened new opportunities for wheat cropping in Argentina?," Climatic Change, Springer, vol. 117(1), pages 181-196, March.
    14. Yadav, Alka & Das, Sourish & Bakar, K. Shuvo & Chakraborti, Anirban, 2023. "Understanding the complex dynamics of climate change in south-west Australia using Machine Learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    15. Katharina Waha & John Clarke & Kavina Dayal & Mandy Freund & Craig Heady & Irene Parisi & Elisabeth Vogel, 2022. "Past and future rainfall changes in the Australian midlatitudes and implications for agriculture," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    16. Tas Thamo & Donkor Addai & Marit E. Kragt & Ross S. Kingwell & David J. Pannell & Michael J. Robertson, 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 841-865, October.
    17. Mekonnen, Mesfin M. & Hoekstra, Arjen Y. & Neale, Christopher M.U. & Ray, Chittaranjan & Yang, Haishun S., 2020. "Water productivity benchmarks: The case of maize and soybean in Nebraska," Agricultural Water Management, Elsevier, vol. 234(C).
    18. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.
    19. Mahmood, A. & Oweis, T. & Ashraf, M. & Majid, A. & Aftab, M. & Aadal, N.K. & Ahmad, I., 2015. "Performance of improved practices in farmers’ fields under rainfed and supplemental irrigation systems in a semi-arid area of Pakistan," Agricultural Water Management, Elsevier, vol. 155(C), pages 1-10.
    20. Liu, Run Jin & Sheng, Ping Ping & Hui, Hai Bin & Lin, Qi & Chen, Ying Long, 2015. "Integrating irrigation management for improved grain yield of winter wheat and rhizosphere AM fungal diversity in a semi-arid cropping system," Agricultural Systems, Elsevier, vol. 132(C), pages 167-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:141:y:2017:i:4:d:10.1007_s10584-017-1904-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.