IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i1p181-196.html
   My bibliography  Save this article

Has climate change opened new opportunities for wheat cropping in Argentina?

Author

Listed:
  • Senthold Asseng
  • Maria Travasso
  • Fulco Ludwig
  • Graciela Magrin

Abstract

As a result of climate change, and in particular rainfall changes, agricultural production is likely to change across the globe. Until now most research has focused on areas which will become unsustainable for agricultural production. However, there are also regions where climate change might actually improve conditions for growth. In the western Pampas region of Argentina, average annual rainfall has increased by 100–200 mm over the last 70 years, mainly during summer. Wheat is grown during winter, primarily on stored soil water and the main factor limiting plant production in this area is rainfall. Using the well tested simulation model APSIM-NWheat, we studied whether recent climate change has potentially opened new opportunities for wheat cropping in Argentina. Simulation results indicated that the additional rainfall in the Pampas of Argentina has increased the achievable yield (defined as the yield limited by solar radiation, temperature, water and nitrogen supply) of wheat in the currently cropped region, but less than expected based on the large amount of additional rainfall. The higher achievable yield from additional rainfall could potentially allow an expansion of profitable wheat cropping into currently non-cropped areas, where the achievable wheat yield increased in average from 1 t/ha to currently 2 t/ha. However, the poor water-holding capacity of the sandy soils which dominate the region outside the current cropping area limits the systems ability to use most of the increased summer rainfall. Nevertheless, the current higher achievable yield indicates a suitability of the region for cropping, which will slightly decline or remain unchanged depending on summer rainfall storage, with current and future climate change, including projected changes in rainfall, temperature and atmospheric CO 2 concentration. Factors other than just the achievable yield will eventually influence any future development of this region for cropping, including the high sensitivity of the sandy soils to erosion and nutrient leaching, current relatively high land prices, restrictions on clearing for cropping, the distance to the nearest port and current unsuitable cultivars withstanding the high frost risk. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Senthold Asseng & Maria Travasso & Fulco Ludwig & Graciela Magrin, 2013. "Has climate change opened new opportunities for wheat cropping in Argentina?," Climatic Change, Springer, vol. 117(1), pages 181-196, March.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:1:p:181-196
    DOI: 10.1007/s10584-012-0553-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0553-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0553-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fulco Ludwig & Stephen Milroy & Senthold Asseng, 2009. "Impacts of recent climate change on wheat production systems in Western Australia," Climatic Change, Springer, vol. 92(3), pages 495-517, February.
    2. R. Mall & Ranjeet Singh & Akhilesh Gupta & G. Srinivasan & L. Rathore, 2007. "Impact of climate change on Indian agriculture: a review," Climatic Change, Springer, vol. 82(1), pages 225-231, May.
    3. Ludwig, Fulco & Asseng, Senthold, 2006. "Climate change impacts on wheat production in a Mediterranean environment in Western Australia," Agricultural Systems, Elsevier, vol. 90(1-3), pages 159-179, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
    2. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    3. Tas Thamo & Donkor Addai & Marit E. Kragt & Ross S. Kingwell & David J. Pannell & Michael J. Robertson, 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 841-865, October.
    4. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    5. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    6. Asseng, S. & Dray, A. & Perez, P. & Su, X., 2010. "Rainfall–human–spatial interactions in a salinity-prone agricultural region of the Western Australian wheat-belt," Ecological Modelling, Elsevier, vol. 221(5), pages 812-824.
    7. Thamo, Tas & Addai, Donkor & Pannell, David J. & Robertson, Michael J. & Thomas, Dean T. & Young, John M., 2017. "Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system," Agricultural Systems, Elsevier, vol. 150(C), pages 99-108.
    8. Ahmad, Munir & Siftain, Hassan & Iqbal, Muhammad, 2014. "Impact of Climate Change on Wheat Productivity in Pakistan: A District Level Analysis," MPRA Paper 72859, University Library of Munich, Germany.
    9. Shahbaz Bhatti & Sarfraz Hassan & Khalid Mushtaq & Kamran Javed, 2020. "Investigation The Impact Of Climate Change On Productivity Of Cotton: Empirical Evidence From Cotton Zone," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 1-4, February.
    10. Ludwig, Fulco & Asseng, Senthold, 2010. "Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates," Agricultural Systems, Elsevier, vol. 103(3), pages 127-136, March.
    11. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    12. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    13. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    14. Prabal Barua & Syed Hafizur Rahman, 2020. "Resilience Of Agriculture Farmers For Crop Production In Responses To Climate Change Impact On South - Eastern Coast Of Bangladesh," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 28-37, April.
    15. Andi Syah Putra & Guangji Tong & Didit Okta Pribadi, 2020. "Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    16. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    17. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2020. "Accounting for diverse risk attitudes in measures of risk perceptions: A case study of climate change risk for small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 95(C).
    18. Chao Chen & Walter Baethgen & Andrew Robertson, 2013. "Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003," Climatic Change, Springer, vol. 116(3), pages 767-788, February.
    19. Mohammad Bannayan & Ehsan Eyshi Rezaei, 2014. "Future production of rainfed wheat in Iran (Khorasan province): climate change scenario analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 211-227, February.
    20. Oliver, Yvette M. & Robertson, Michael J. & Weeks, Cameron, 2010. "A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 98(2), pages 291-300, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:1:p:181-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.