IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v146y2018i3d10.1007_s10584-016-1775-1.html
   My bibliography  Save this article

Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA

Author

Listed:
  • A. Marsha

    (University of Washington)

  • S. R. Sain

    (The Climate Corp)

  • M. J. Heaton

    (Brigham Young University)

  • A. J. Monaghan

    (National Center for Atmospheric Research)

  • O.V. Wilhelmi

    (National Center for Atmospheric Research)

Abstract

Extreme heat is a significant public health challenge in urban environments that disproportionally impacts vulnerable members of society. In this research, demographic, economic and climate projections are brought together with a statistical approach linking extreme heat and mortality in Houston, Texas. The sensitivity of heat-related non-accidental mortality to future changes of demographics, income and climate is explored. We compare climate change outcomes associated with two different Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, which describe alternate future scenarios for greenhouse gas emissions and concentrations. For each RCP, we explore demographic and economic scenarios for two plausible Shared Socioeconomic Pathways (SSPs), SSP3 and SSP5. Our findings suggest that non-accidental mortality in 2061–2080 may increase for all combinations of RCP and SSP scenarios compared to a historical reference period spanning 1991–2010. Notably, increased heat-related non-accidental mortality is associated with changes in the size and age of the population, but the degree of sensitivity is highly uncertain given the breadth of plausible socioeconomic scenarios. Beyond socioeconomic changes, climate change is also important. For each socioeconomic scenario, non-accidental mortality associated with the lower emissions RCP4.5 scenario is projected to be 50 % less than mortality projected under the higher emissions RCP8.5 scenario.

Suggested Citation

  • A. Marsha & S. R. Sain & M. J. Heaton & A. J. Monaghan & O.V. Wilhelmi, 2018. "Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA," Climatic Change, Springer, vol. 146(3), pages 471-485, February.
  • Handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1775-1
    DOI: 10.1007/s10584-016-1775-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1775-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1775-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    2. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    3. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    4. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    5. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    6. P. Duffy & C. Tebaldi, 2012. "Increasing prevalence of extreme summer temperatures in the U.S," Climatic Change, Springer, vol. 111(2), pages 487-495, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jae Young Lee & Woo-Seop Lee & Kristie L. Ebi & Ho Kim, 2019. "Temperature-Related Summer Mortality Under Multiple Climate, Population, and Adaptation Scenarios," IJERPH, MDPI, vol. 16(6), pages 1-9, March.
    2. Gu, Xinyue & Chen, Pengyu & Fan, Chao, 2024. "Socio-demographic inequalities in the impacts of extreme temperatures on population mobility11This research received no specific grant from any funding agency, commercial or not-for-profit sectors," Journal of Transport Geography, Elsevier, vol. 114(C).
    3. Guillaume Rohat & Olga Wilhelmi & Johannes Flacke & Andrew Monaghan & Jing Gao & Martin Maarseveen & Hy Dao, 2021. "Assessing urban heat-related adaptation strategies under multiple futures for a major U.S. city," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    4. Guillaume Rohat, 2018. "Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 15(3), pages 1-23, March.
    5. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    6. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dirk-Jan van de Ven & Mikel González-Eguino & Iñaki Arto, 2018. "The potential of behavioural change for climate change mitigation: a case study for the European Union," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 853-886, August.
    2. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    3. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    4. Kun Peng & Kuishuang Feng & Bin Chen & Yuli Shan & Ning Zhang & Peng Wang & Kai Fang & Yanchao Bai & Xiaowei Zou & Wendong Wei & Xinyi Geng & Yiyi Zhang & Jiashuo Li, 2023. "The global power sector’s low-carbon transition may enhance sustainable development goal achievement," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    6. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    7. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    8. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.
    10. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    11. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    12. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    13. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    14. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    15. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    16. Shiva Zargar & Yuan Yao & Qingshi Tu, 2022. "A review of inventory modeling methods for missing data in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1676-1689, October.
    17. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    18. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    19. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    20. Julien CALAS & Antoine GODIN & Julie MAURIN (AFD) & and Etienne ESPAGNE (World Bank), 2022. "Global biodiversity scenarios: what do they tell us for biodiversity-related socioeconomic impacts?," Working Paper 1a39419b-ef1d-4b82-a7be-d, Agence française de développement.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1775-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.