IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v125y2014i2p265-276.html
   My bibliography  Save this article

Time of emergence of climate signals over China under the RCP4.5 scenario

Author

Listed:
  • Yue Sui
  • Xianmei Lang
  • Dabang Jiang

Abstract

The signal of climate change is emerging against a background of natural internal variability. The time of emergence (ToE) is an indicator of the magnitude of the climate change signal relative to this background variability and may be useful for climate impact assessments. In this work, we examined the ToE of surface air temperature and precipitation over China under a medium mitigation scenario Representative Concentration Pathway 4.5 based on 30 satisfactory global climate models that are chosen from the Coupled Model Intercomparison Project Phase 5. Major conclusions are: the earliest ToE of annual and seasonal temperature occurs in the eastern Qinghai-Tibetan Plateau between 2006 and 2012 for S/N > 1.0 and between 2020 and 2030 for S/N > 2.0, which is 10–20 years sooner than in Northeast China where the latest ToE appears in the country. Consistent with previous studies at the global scale, the median ToE for most of China occurs sooner in summer (2008–2020 for S/N > 1.0 and 2020–2045 for S/N > 2.0), while for Northeast and North China the median ToE occurs sooner in autumn (2015–2025 for S/N > 1.0 and 2040–2050 for S/N > 2.0). For the ToE of temperature, the inter-model uncertainty is at least 24 years in all five regions of concern and more than 85 years in some seasons, and the inter-model uncertainty in one season for which the earliest median ToE occurs is the smallest among the seasons. For precipitation, the early ToE occurs in the northeastern Qinghai-Tibetan Plateau for the annual mean, and seasonally it occurs first in winter in northern Northeast China and southwestern Northwest China and in winter and spring in the northeastern Qinghai-Tibetan Plateau. For southern China, the median ToE will not occur until 2090. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Yue Sui & Xianmei Lang & Dabang Jiang, 2014. "Time of emergence of climate signals over China under the RCP4.5 scenario," Climatic Change, Springer, vol. 125(2), pages 265-276, July.
  • Handle: RePEc:spr:climat:v:125:y:2014:i:2:p:265-276
    DOI: 10.1007/s10584-014-1151-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1151-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1151-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carol McSweeney & Richard Jones, 2013. "No consensus on consensus: the challenge of finding a universal approach to measuring and mapping ensemble consistency in GCM projections," Climatic Change, Springer, vol. 119(3), pages 617-629, August.
    2. Zhihong Jiang & Jie Song & Laurent Li & Weilin Chen & Zhifu Wang & Ji Wang, 2012. "Extreme climate events in China: IPCC-AR4 model evaluation and projection," Climatic Change, Springer, vol. 110(1), pages 385-401, January.
    3. Carol McSweeney & Richard Jones, 2013. "Erratum to: No consensus on consensus: the challenge of finding a universal approach to measuring and mapping ensemble consistency in GCM projections," Climatic Change, Springer, vol. 120(4), pages 959-959, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Sui & Yuting Chen, 2022. "Signals in temperature extremes emerge in China during the last millennium based on CMIP5 simulations," Climatic Change, Springer, vol. 172(3), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakineh Khansalari & Atefeh Mohammadi, 2024. "Probabilistic projection of extreme precipitation changes over Iran by the CMIP6 multi-model ensemble," Climatic Change, Springer, vol. 177(7), pages 1-26, July.
    2. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    3. Ralph Trancoso & Jozef Syktus & Richard P. Allan & Jacky Croke & Ove Hoegh-Guldberg & Robin Chadwick, 2024. "Significantly wetter or drier future conditions for one to two thirds of the world’s population," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Sifan Hu & Jin Chen, 2016. "Place-based inter-generational communication on local climate improves adolescents’ perceptions and willingness to mitigate climate change," Climatic Change, Springer, vol. 138(3), pages 425-438, October.
    5. Qian Wang & Qi-peng Zhang & Yang-yang Liu & Lin-jing Tong & Yan-zhen Zhang & Xiao-yu Li & Jian-long Li, 2020. "Characterizing the spatial distribution of typical natural disaster vulnerability in China from 2010 to 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 3-15, January.
    6. Liu Yuhui & Li Zhiling, 2021. "Stalagmite flooding frequency record since the middle Little Ice Age from Central China," Climatic Change, Springer, vol. 164(3), pages 1-13, February.
    7. Xiaojun Guo & Jianbin Huang & Yong Luo & Zongci Zhao & Ying Xu, 2016. "Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2299-2319, December.
    8. Kamal Ahmed & Zafar Iqbal & Najeebullah Khan & Balach Rasheed & Nadeem Nawaz & Irfan Malik & Mohammad Noor, 2020. "Quantitative assessment of precipitation changes under CMIP5 RCP scenarios over the northern sub-Himalayan region of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7831-7845, December.
    9. Xunfeng Yang & Lianfa Li & Jinfeng Wang & Jixia Huang & Shijun Lu, 2015. "Cardiovascular Mortality Associated with Low and High Temperatures: Determinants of Inter-Region Vulnerability in China," IJERPH, MDPI, vol. 12(6), pages 1-16, May.
    10. Zhansheng Li & Xiaolin Guo & Yuan Yang & Yang Hong & Zhongjing Wang & Liangzhi You, 2019. "Heatwave Trends and the Population Exposure Over China in the 21st Century as Well as Under 1.5 °C and 2.0 °C Global Warmer Future Scenarios," Sustainability, MDPI, vol. 11(12), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:125:y:2014:i:2:p:265-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.