IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v122y2014i4p539-554.html
   My bibliography  Save this article

Interrogating empirical-statistical downscaling

Author

Listed:
  • B. Hewitson
  • J. Daron
  • R. Crane
  • M. Zermoglio
  • C. Jack

Abstract

The delivery of downscaled climate information is increasingly seen as a vehicle of climate services, a driver for impacts studies and adaptation decisions, and for informing policy development. Empirical-statistical downscaling (ESD) is widely used; however, the accompanying responsibility is significant, and predicated on effective understanding of the limitations and capabilities of ESD methods. There remain substantial contradictions, uncertainties, and sensitivity to assumptions between the different methods commonly used. Yet providing decision-relevant downscaled climate projections to help support national and local adaptation is core to the growing global momentum seeking to operationalize what is, in effect, still foundational research. We argue that any downscaled climate information must address the criteria of being plausible, defensible and actionable. Climate scientists cannot absolve themselves of their ethical responsibility when informing adaptation and must, therefore, be diligent in ensuring any information provided adequately addresses these three criteria. Frameworks for supporting such assessment are not well developed. We interrogate the conceptual foundations of statistical downscaling methodologies and their assumptions, and articulate a framework for evaluating and integrating downscaling output into the wider landscape of climate information. For ESD there are key criteria that need to be satisfied to underpin the credibility of the derived product. Assessing these criteria requires the use of appropriate metrics to test the comprehensive treatment of local climate response to large-scale forcing, and to compare across methods. We illustrate the potential consequences of methodological choices on the interpretation of downscaling results and explore the purposes, benefits and limitations of using statistical downscaling. Copyright The Author(s) 2014

Suggested Citation

  • B. Hewitson & J. Daron & R. Crane & M. Zermoglio & C. Jack, 2014. "Interrogating empirical-statistical downscaling," Climatic Change, Springer, vol. 122(4), pages 539-554, February.
  • Handle: RePEc:spr:climat:v:122:y:2014:i:4:p:539-554
    DOI: 10.1007/s10584-013-1021-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-1021-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-1021-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Jeong & A. St-Hilaire & T. Ouarda & P. Gachon, 2012. "Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator," Climatic Change, Springer, vol. 114(3), pages 567-591, October.
    2. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    3. Chris Hewitt & Simon Mason & David Walland, 2012. "The Global Framework for Climate Services," Nature Climate Change, Nature, vol. 2(12), pages 831-832, December.
    4. J. Bedia & S. Herrera & D. Martín & N. Koutsias & J. Gutiérrez, 2013. "Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling," Climatic Change, Springer, vol. 120(1), pages 229-247, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Daron & Ian Macadam & Hideki Kanamaru & Thelma Cinco & Jack Katzfey & Claire Scannell & Richard Jones & Marcelino Villafuerte & Faye Cruz & Gemma Narisma & Rafaela Jane Delfino & Rodel Lasco & , 2018. "Providing future climate projections using multiple models and methods: insights from the Philippines," Climatic Change, Springer, vol. 148(1), pages 187-203, May.
    2. Ye, Bin & Jiang, Jingjing & Liu, Junguo & Zheng, Yi & Zhou, Nan, 2021. "Research on quantitative assessment of climate change risk at an urban scale: Review of recent progress and outlook of future direction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. R. Manzanas & L. Fiwa & C. Vanya & H. Kanamaru & J. M. Gutiérrez, 2020. "Statistical downscaling or bias adjustment? A case study involving implausible climate change projections of precipitation in Malawi," Climatic Change, Springer, vol. 162(3), pages 1437-1453, October.
    4. Keith W. Dixon & John R. Lanzante & Mary Jo Nath & Katharine Hayhoe & Anne Stoner & Aparna Radhakrishnan & V. Balaji & Carlos F. Gaitán, 2016. "Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results?," Climatic Change, Springer, vol. 135(3), pages 395-408, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marion Lestienne & Boris Vannière & Thomas Curt & Isabelle Jouffroy-Bapicot & Christelle Hély, 2022. "Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability," Climatic Change, Springer, vol. 170(1), pages 1-18, January.
    2. Enoch Bessah & Emmanuel A. Boakye & Sampson K. Agodzo & Emmanuel Nyadzi & Isaac Larbi & Alfred Awotwi, 2021. "Increased seasonal rainfall in the twenty-first century over Ghana and its potential implications for agriculture productivity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12342-12365, August.
    3. Jose Garrido & Xavier Milhaud & Anani Olympio & Max Popp, 2024. "Climate Risk and its Impact on Insurance [Risque climatique et impact en assurance]," Post-Print hal-04684634, HAL.
    4. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    5. dos Reis Martins, Márcio & Ammann, Christof & Boos, Carolin & Calanca, Pierluigi & Kiese, Ralf & Wolf, Benjamin & Keel, Sonja G., 2024. "Reducing N fertilization in the framework of the European Farm to Fork strategy under global change: Impacts on yields, N2O emissions and N leaching of temperate grasslands in the Alpine region," Agricultural Systems, Elsevier, vol. 219(C).
    6. Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek & Pavel Zahradníček & Petr Pišoft, 2014. "Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis," Climatic Change, Springer, vol. 125(2), pages 253-264, July.
    7. Wang, Junbo & Ma, Zhenyu & Fan, Xiayang, 2023. "We are all in the same boat: The welfare and carbon abatement effects of the EU carbon border adjustment mechanism," MPRA Paper 118978, University Library of Munich, Germany.
    8. Luke J. Harrington, 2017. "Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change," Climatic Change, Springer, vol. 141(4), pages 641-654, April.
    9. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    10. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    11. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    12. Marco Turco & Maria-Carmen Llasat & Jost Hardenberg & Antonello Provenzale, 2014. "Climate change impacts on wildfires in a Mediterranean environment," Climatic Change, Springer, vol. 125(3), pages 369-380, August.
    13. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    14. Byman H. Hamududu & Hambulo Ngoma, 2020. "Impacts of climate change on water resources availability in Zambia: implications for irrigation development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2817-2838, April.
    15. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    16. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    17. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    18. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    19. Ma, L. & Ahuja, L.R. & Islam, A. & Trout, T.J. & Saseendran, S.A. & Malone, R.W., 2017. "Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 88-98.
    20. Juying Wang & Feng Guan & Ting Li & Can Wang & Qianqian Han & Bin Yu, 2015. "Optimization of the Waterbus Operation Plan Considering Carbon Emissions: The Case of Zhoushan City," Sustainability, MDPI, vol. 7(8), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:122:y:2014:i:4:p:539-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.