IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v120y2013i1p229-247.html
   My bibliography  Save this article

Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling

Author

Listed:
  • J. Bedia
  • S. Herrera
  • D. Martín
  • N. Koutsias
  • J. Gutiérrez

Abstract

The effect of climate change on wildfires constitutes a serious concern in fire-prone regions with complex fire behavior such as the Mediterranean. The coarse resolution of future climate projections produced by General Circulation Models (GCMs) prevents their direct use in local climate change studies. Statistical downscaling techniques bridge this gap using empirical models that link the synoptic-scale variables from GCMs to the local variables of interest (using e.g. data from meteorological stations). In this paper, we investigate the application of statistical downscaling methods in the context of wildfire research, focusing in the Canadian Fire Weather Index (FWI), one of the most popular fire danger indices. We target on the Iberian Peninsula and Greece and use historical observations of the FWI meteorological drivers (temperature, humidity, wind and precipitation) in several local stations. In particular, we analyze the performance of the analog method, which is a convenient first choice for this problem since it guarantees physical and spatial consistency of the downscaled variables, regardless of their different statistical properties. First we validate the method in perfect model conditions using ERA-Interim reanalysis data. Overall, not all variables are downscaled with the same accuracy, with the poorest results (with spatially averaged daily correlations below 0.5) obtained for wind, followed by precipitation. Consequently, those FWI components mostly relying on those parameters exhibit the poorest results. However, those deficiencies are compensated in the resulting FWI values due to the overall high performance of temperature and relative humidity. Then, we check the suitability of the method to downscale control projections (20C3M scenario) from a single GCM (the ECHAM5 model) and compute the downscaled future fire danger projections for the transient A1B scenario. In order to detect problems due to non-stationarities related to climate change, we compare the results with those obtained with a Regional Climate Model (RCM) driven by the same GCM. Although both statistical and dynamical projections exhibit a similar pattern of risk increment in the first half of the 21st century, they diverge during the second half of the century. As a conclusion, we advocate caution in the use of projections for this last period, regardless of the regionalization technique applied. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • J. Bedia & S. Herrera & D. Martín & N. Koutsias & J. Gutiérrez, 2013. "Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling," Climatic Change, Springer, vol. 120(1), pages 229-247, September.
  • Handle: RePEc:spr:climat:v:120:y:2013:i:1:p:229-247
    DOI: 10.1007/s10584-013-0787-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0787-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0787-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Herrera & J. Bedia & J. Gutiérrez & J. Fernández & J. Moreno, 2013. "On the projection of future fire danger conditions with various instantaneous/mean-daily data sources," Climatic Change, Springer, vol. 118(3), pages 827-840, June.
    2. Meg Krawchuk & Steve Cumming & Mike Flannigan, 2009. "Predicted changes in fire weather suggest increases in lightning fire initiation and future area burned in the mixedwood boreal forest," Climatic Change, Springer, vol. 92(1), pages 83-97, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Casanueva & M. Frías & S. Herrera & D. San-Martín & K. Zaninovic & J. Gutiérrez, 2014. "Statistical downscaling of climate impact indices: testing the direct approach," Climatic Change, Springer, vol. 127(3), pages 547-560, December.
    2. A. Casanueva & J. Bedia & S. Herrera & J. Fernández & J. M. Gutiérrez, 2018. "Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool," Climatic Change, Springer, vol. 147(3), pages 411-425, April.
    3. Marco Turco & Maria-Carmen Llasat & Jost Hardenberg & Antonello Provenzale, 2014. "Climate change impacts on wildfires in a Mediterranean environment," Climatic Change, Springer, vol. 125(3), pages 369-380, August.
    4. Marion Lestienne & Boris Vannière & Thomas Curt & Isabelle Jouffroy-Bapicot & Christelle Hély, 2022. "Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability," Climatic Change, Springer, vol. 170(1), pages 1-18, January.
    5. Enoch Bessah & Emmanuel A. Boakye & Sampson K. Agodzo & Emmanuel Nyadzi & Isaac Larbi & Alfred Awotwi, 2021. "Increased seasonal rainfall in the twenty-first century over Ghana and its potential implications for agriculture productivity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12342-12365, August.
    6. Xianli Wang & Dan Thompson & Ginny Marshall & Cordy Tymstra & Richard Carr & Mike Flannigan, 2015. "Increasing frequency of extreme fire weather in Canada with climate change," Climatic Change, Springer, vol. 130(4), pages 573-586, June.
    7. B. Hewitson & J. Daron & R. Crane & M. Zermoglio & C. Jack, 2014. "Interrogating empirical-statistical downscaling," Climatic Change, Springer, vol. 122(4), pages 539-554, February.
    8. Hamish Clarke & Andrew J. Pitman & Jatin Kala & Claire Carouge & Vanessa Haverd & Jason P. Evans, 2016. "An investigation of future fuel load and fire weather in Australia," Climatic Change, Springer, vol. 139(3), pages 591-605, December.
    9. J. Bedia & S. Herrera & A. Camia & J. M. Moreno & J. M. Gutiérrez, 2014. "Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios," Climatic Change, Springer, vol. 122(1), pages 185-199, January.
    10. Melania Michetti & Mehmet Pinar, 2019. "Forest Fires Across Italian Regions and Implications for Climate Change: A Panel Data Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 207-246, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megan C. Kirchmeier-Young & Francis W. Zwiers & Nathan P. Gillett & Alex J. Cannon, 2017. "Attributing extreme fire risk in Western Canada to human emissions," Climatic Change, Springer, vol. 144(2), pages 365-379, September.
    2. Thibaut Fréjaville & Thomas Curt, 2015. "Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin)," Climatic Change, Springer, vol. 129(1), pages 239-251, March.
    3. Bruno A. Aparício & João A. Santos & Teresa R. Freitas & Ana C. L. Sá & José M. C. Pereira & Paulo M. Fernandes, 2022. "Unravelling the effect of climate change on fire danger and fire behaviour in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain)," Climatic Change, Springer, vol. 173(1), pages 1-20, July.
    4. Craig Nitschke & John Innes, 2013. "Potential effect of climate change on observed fire regimes in the Cordilleran forests of South-Central Interior, British Columbia," Climatic Change, Springer, vol. 116(3), pages 579-591, February.
    5. A. Casanueva & J. Bedia & S. Herrera & J. Fernández & J. M. Gutiérrez, 2018. "Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool," Climatic Change, Springer, vol. 147(3), pages 411-425, April.
    6. Michael Manton & Charles Ruffner & Gintautas Kibirkštis & Gediminas Brazaitis & Vitas Marozas & Rūtilė Pukienė & Ekaterina Makrickiene & Per Angelstam, 2022. "Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania," Land, MDPI, vol. 11(2), pages 1-25, February.
    7. Sturtevant, Brian R. & Scheller, Robert M. & Miranda, Brian R. & Shinneman, Douglas & Syphard, Alexandra, 2009. "Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II," Ecological Modelling, Elsevier, vol. 220(23), pages 3380-3393.
    8. J. Bedia & S. Herrera & A. Camia & J. M. Moreno & J. M. Gutiérrez, 2014. "Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios," Climatic Change, Springer, vol. 122(1), pages 185-199, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:120:y:2013:i:1:p:229-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.