IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v122y2014i1p185-199.html
   My bibliography  Save this article

Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios

Author

Listed:
  • J. Bedia
  • S. Herrera
  • A. Camia
  • J. M. Moreno
  • J. M. Gutiérrez

Abstract

We present future fire danger scenarios for the countries bordering the Mediterranean areas of Europe and north Africa building on a multi-model ensemble of state-of-the-art regional climate projections from the EU-funded project ENSEMBLES. Fire danger is estimated using the Canadian Forest Fire Weather Index (FWI) System and a related set of indices. To overcome some of the limitations of ENSEMBLES data for their application on the FWI System—recently highlighted in a previous study by Herrera et al. (Clim Chang 118:827–840, 2013)—we used an optimal proxy variable combination. A robust assessment of future fire danger projections is undertaken by disentangling the climate change signal from the uncertainty derived from the multi-model ensemble, unveiling a positive signal of fire danger potential over large areas of the Mediterranean. The increase in the fire danger signal is accentuated towards the latest part of the transient period, thus pointing to an elevated fire potential in the region with time. The fire-climate links under present and future conditions are further discussed building upon observed climate data and burned area records along a representative climatic gradient within the study region. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • J. Bedia & S. Herrera & A. Camia & J. M. Moreno & J. M. Gutiérrez, 2014. "Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios," Climatic Change, Springer, vol. 122(1), pages 185-199, January.
  • Handle: RePEc:spr:climat:v:122:y:2014:i:1:p:185-199
    DOI: 10.1007/s10584-013-1005-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-1005-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-1005-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meg Krawchuk & Steve Cumming & Mike Flannigan, 2009. "Predicted changes in fire weather suggest increases in lightning fire initiation and future area burned in the mixedwood boreal forest," Climatic Change, Springer, vol. 92(1), pages 83-97, January.
    2. J. Bedia & S. Herrera & D. Martín & N. Koutsias & J. Gutiérrez, 2013. "Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling," Climatic Change, Springer, vol. 120(1), pages 229-247, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Casanueva & M. Frías & S. Herrera & D. San-Martín & K. Zaninovic & J. Gutiérrez, 2014. "Statistical downscaling of climate impact indices: testing the direct approach," Climatic Change, Springer, vol. 127(3), pages 547-560, December.
    2. Giuseppe Bombino & Daniela D’Agostino & Pasquale A. Marziliano & Pedro Pérez Cutillas & Salvatore Praticò & Andrea R. Proto & Leonardo M. Manti & Giuseppina Lofaro & Santo M. Zimbone, 2024. "A Nature-Based Approach Using Felled Burnt Logs to Enhance Forest Recovery Post-Fire and Reduce Erosion Phenomena in the Mediterranean Area," Land, MDPI, vol. 13(2), pages 1-29, February.
    3. Olga M. Lozano & Michele Salis & Alan A. Ager & Bachisio Arca & Fermin J. Alcasena & Antonio T. Monteiro & Mark A. Finney & Liliana Del Giudice & Enrico Scoccimarro & Donatella Spano, 2017. "Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1898-1916, October.
    4. A. Casanueva & J. Bedia & S. Herrera & J. Fernández & J. M. Gutiérrez, 2018. "Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool," Climatic Change, Springer, vol. 147(3), pages 411-425, April.
    5. Valentina Bacciu & Maria Hatzaki & Anna Karali & Adeline Cauchy & Christos Giannakopoulos & Donatella Spano & Elodie Briche, 2021. "Investigating the Climate-Related Risk of Forest Fires for Mediterranean Islands’ Blue Economy," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    6. Piyush Jain & Mari R. Tye & Debasish Paimazumder & Mike Flannigan, 2020. "Downscaling fire weather extremes from historical and projected climate models," Climatic Change, Springer, vol. 163(1), pages 189-216, November.
    7. Lasanta, Teodoro & Cortijos-López, Melani & Errea, M. Paz & Khorchani, Makki & Nadal-Romero, Estela, 2022. "An environmental management experience to control wildfires in the mid-mountain mediterranean area: Shrub clearing to generate mosaic landscapes," Land Use Policy, Elsevier, vol. 118(C).
    8. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    9. Gabriele Vissio & Marco Turco & Antonello Provenzale, 2023. "Testing drought indicators for summer burned area prediction in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1125-1137, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamish Clarke & Andrew J. Pitman & Jatin Kala & Claire Carouge & Vanessa Haverd & Jason P. Evans, 2016. "An investigation of future fuel load and fire weather in Australia," Climatic Change, Springer, vol. 139(3), pages 591-605, December.
    2. Xianli Wang & Dan Thompson & Ginny Marshall & Cordy Tymstra & Richard Carr & Mike Flannigan, 2015. "Increasing frequency of extreme fire weather in Canada with climate change," Climatic Change, Springer, vol. 130(4), pages 573-586, June.
    3. A. Casanueva & M. Frías & S. Herrera & D. San-Martín & K. Zaninovic & J. Gutiérrez, 2014. "Statistical downscaling of climate impact indices: testing the direct approach," Climatic Change, Springer, vol. 127(3), pages 547-560, December.
    4. A. Casanueva & J. Bedia & S. Herrera & J. Fernández & J. M. Gutiérrez, 2018. "Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool," Climatic Change, Springer, vol. 147(3), pages 411-425, April.
    5. Melania Michetti & Mehmet Pinar, 2019. "Forest Fires Across Italian Regions and Implications for Climate Change: A Panel Data Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 207-246, January.
    6. Marco Turco & Maria-Carmen Llasat & Jost Hardenberg & Antonello Provenzale, 2014. "Climate change impacts on wildfires in a Mediterranean environment," Climatic Change, Springer, vol. 125(3), pages 369-380, August.
    7. Marion Lestienne & Boris Vannière & Thomas Curt & Isabelle Jouffroy-Bapicot & Christelle Hély, 2022. "Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability," Climatic Change, Springer, vol. 170(1), pages 1-18, January.
    8. Megan C. Kirchmeier-Young & Francis W. Zwiers & Nathan P. Gillett & Alex J. Cannon, 2017. "Attributing extreme fire risk in Western Canada to human emissions," Climatic Change, Springer, vol. 144(2), pages 365-379, September.
    9. B. Hewitson & J. Daron & R. Crane & M. Zermoglio & C. Jack, 2014. "Interrogating empirical-statistical downscaling," Climatic Change, Springer, vol. 122(4), pages 539-554, February.
    10. Craig Nitschke & John Innes, 2013. "Potential effect of climate change on observed fire regimes in the Cordilleran forests of South-Central Interior, British Columbia," Climatic Change, Springer, vol. 116(3), pages 579-591, February.
    11. Michael Manton & Charles Ruffner & Gintautas Kibirkštis & Gediminas Brazaitis & Vitas Marozas & Rūtilė Pukienė & Ekaterina Makrickiene & Per Angelstam, 2022. "Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania," Land, MDPI, vol. 11(2), pages 1-25, February.
    12. Sturtevant, Brian R. & Scheller, Robert M. & Miranda, Brian R. & Shinneman, Douglas & Syphard, Alexandra, 2009. "Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II," Ecological Modelling, Elsevier, vol. 220(23), pages 3380-3393.
    13. J. Bedia & S. Herrera & D. Martín & N. Koutsias & J. Gutiérrez, 2013. "Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling," Climatic Change, Springer, vol. 120(1), pages 229-247, September.
    14. Enoch Bessah & Emmanuel A. Boakye & Sampson K. Agodzo & Emmanuel Nyadzi & Isaac Larbi & Alfred Awotwi, 2021. "Increased seasonal rainfall in the twenty-first century over Ghana and its potential implications for agriculture productivity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12342-12365, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:122:y:2014:i:1:p:185-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.