IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v120y2013i4p931-944.html
   My bibliography  Save this article

Multidecadal oscillatory behaviour of rainfall extremes in Europe

Author

Listed:
  • Patrick Willems

Abstract

Many studies have observed changes in the frequency and intensity of precipitation extremes and floods during the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extremes, this paper shows that precipitation extremes have oscillatory behaviour at multidecadal time scales. The analysis is based on a unique dataset of 108 years of 10-minute precipitation intensities at Uccle (Brussels), not affected by instrumental changes. We also checked the consistency of the findings with long precipitation records at 724 stations across Europe and the Middle East. The past 100 years show for northwestern Europe, both in winter and summer, larger and more precipitation extremes around the 1910s, 1950–1960s, and more recently during the 1990s–2000s. The oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930–1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years. Copyright The Author(s) 2013

Suggested Citation

  • Patrick Willems, 2013. "Multidecadal oscillatory behaviour of rainfall extremes in Europe," Climatic Change, Springer, vol. 120(4), pages 931-944, October.
  • Handle: RePEc:spr:climat:v:120:y:2013:i:4:p:931-944
    DOI: 10.1007/s10584-013-0837-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0837-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0837-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ida Gregersen & Hjalte Sørup & Henrik Madsen & Dan Rosbjerg & Peter Mikkelsen & Karsten Arnbjerg-Nielsen, 2013. "Assessing future climatic changes of rainfall extremes at small spatio-temporal scales," Climatic Change, Springer, vol. 118(3), pages 783-797, June.
    2. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    3. Jens H. Christensen & Ole B. Christensen, 2003. "Severe summertime flooding in Europe," Nature, Nature, vol. 421(6925), pages 805-806, February.
    4. Nathan P. Gillett & Francis W. Zwiers & Andrew J. Weaver & Peter A. Stott, 2003. "Detection of human influence on sea-level pressure," Nature, Nature, vol. 422(6929), pages 292-294, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gareth J. Marshall & Kirsti Jylhä & Sonja Kivinen & Mikko Laapas & Anita Verpe Dyrrdal, 2020. "The role of atmospheric circulation patterns in driving recent changes in indices of extreme seasonal precipitation across Arctic Fennoscandia," Climatic Change, Springer, vol. 162(2), pages 741-759, September.
    2. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    2. Chunxiang Li & Tianbao Zhao & Kairan Ying, 2017. "Quantifying the contributions of anthropogenic and natural forcings to climate changes over arid-semiarid areas during 1946–2005," Climatic Change, Springer, vol. 144(3), pages 505-517, October.
    3. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    4. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    5. Brennan, Timothy J., 2011. "Energy Efficiency Policy: Surveying the Puzzles," RFF Working Paper Series dp-11-27, Resources for the Future.
    6. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    7. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    8. Qiang Zhang & Jianfeng Li & Vijay Singh & Yungang Bai, 2012. "SPI-based evaluation of drought events in Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 481-492, October.
    9. Abedifar, Pejman & Kashizadeh, Seyed Javad & Ongena, Steven, 2024. "Flood, farms and credit: The role of branch banking in the era of climate change," Journal of Corporate Finance, Elsevier, vol. 85(C).
    10. A. Deo & D. Ganer & G. Nair, 2011. "Tropical cyclone activity in global warming scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 771-786, November.
    11. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    12. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    13. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    14. Yang Yang & Lili Ren & Mingxuan Wu & Hailong Wang & Fengfei Song & L. Ruby Leung & Xin Hao & Jiandong Li & Lei Chen & Huimin Li & Liangying Zeng & Yang Zhou & Pinya Wang & Hong Liao & Jing Wang & Zhen, 2022. "Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. David Kabelka & David Kincl & Jan Vopravil & Jiří Brychta & Jan Bačovský, 2023. "Measuring of infiltration rate in different types of soil in the Czech Republic using a rainfall simulator," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(2), pages 128-137.
    16. Margot Hill Clarvis & Erin Bohensky & Masaru Yarime, 2015. "Can Resilience Thinking Inform Resilience Investments? Learning from Resilience Principles for Disaster Risk Reduction," Sustainability, MDPI, vol. 7(7), pages 1-19, July.
    17. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Juan-Carlos Ciscar & Antonio Soria & Clare M. Goodess & Ole B. Christensen & Ana Iglesias & Luis Garrote & Marta Moneo & Sonia Quiroga & Luc Feyen & Rutger Dankers & Robert Nicholls & Julie Richards &, 2009. "Climate change impacts in Europe. Final report of the PESETA research project," JRC Research Reports JRC55391, Joint Research Centre.
    19. Jinxin Zhu & Xuerou Weng & Bing Guo & Xueting Zeng & Cong Dong, 2023. "Investigating Extreme Snowfall Changes in China Based on an Ensemble of High-Resolution Regional Climate Models," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    20. Junyao Zhang & Ning Yao & Yi Li & Feng Li & Bakhtiyor Pulatov, 2022. "Effects of Different Socioeconomic Development Levels on Extreme Precipitation Events in Mainland China," Sustainability, MDPI, vol. 14(22), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:120:y:2013:i:4:p:931-944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.