IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i13d10.1007_s11269-016-1454-z.html
   My bibliography  Save this article

The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States

Author

Listed:
  • Peng Jiang

    (Desert Research Institute)

  • Zhongbo Yu

    (Hohai University)

  • Mahesh R. Gautam

    (Division of Flood Management, California Department of Water Resources)

  • Kumud Acharya

    (Desert Research Institute)

Abstract

Changes in the frequency or intensity of extreme precipitation events would have profound impacts on both human society and the natural environment. In this paper, we present the results of a comprehensive analysis of the spatiotemporal changes of extreme precipitation in the western United States. The analyses explore the spatial characterization of the El Nino-Southern Oscillation (ENSO)-extreme precipitation response pattern and identify the multi-scale temporal variability in precipitation extremes in the western United States. Results indicate: (1) Extreme precipitation expressed in indices such as seasonal count of days when precipitation is large than 10 mm (R10), seasonal maximum 5-day precipitation (R5D), maximum length of dry spell (CDD), and seasonal total precipitation exceeding 95 percentile (R95) have a dipolar pattern and a transition zone which separates the west into two main dipolar centers regarded as Pacific Northwest and Desert Southwest. The simple precipitation intensity index (SDII) has little correlation with large scale natural oscillations over most of the west. (2) The spatial distributions of annual trend of R10, R5D, SDII, and R95 have seasonal variability in southern California and Lower Colorado River Basin. (3) There are consistent multi-year bands ranging from 2 to 20 years in the R10, R5D, CDD, and R95 winter time series which may be caused by the inter-decadal or multi-decadal modulation of ENSO effects on precipitation extremes. The results can provide beneficial reference to the prediction of precipitation extremes in the west.

Suggested Citation

  • Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:13:d:10.1007_s11269-016-1454-z
    DOI: 10.1007/s11269-016-1454-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1454-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1454-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Vasiliades & P. Galiatsatou & A. Loukas, 2015. "Nonstationary Frequency Analysis of Annual Maximum Rainfall Using Climate Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 339-358, January.
    2. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    3. Jan Adamowski & Kaz Adamowski & John Bougadis, 2010. "Influence of Trend on Short Duration Design Storms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 401-413, February.
    4. Helmi Saidi & Marzia Ciampittiello & Claudia Dresti & Giorgio Ghiglieri, 2015. "Assessment of Trends in Extreme Precipitation Events: A Case Study in Piedmont (North-West Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 63-80, January.
    5. José Sena & Leandro Beser de Deus & Marcos Freitas & Lazaro Costa, 2012. "Extreme Events of Droughts and Floods in Amazonia: 2005 and 2009," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1665-1676, April.
    6. A. Yilmaz & B. Perera, 2015. "Spatiotemporal Trend Analysis of Extreme Rainfall Events in Victoria, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4465-4480, September.
    7. Myles R. Allen & William J. Ingram, 2002. "Constraints on future changes in climate and the hydrologic cycle," Nature, Nature, vol. 419(6903), pages 224-232, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahad Alzahrani & Ousmane Seidou & Abdullah Alodah, 2022. "Assessment and Improvement of IDF Generation Algorithms Used in the IDF_CC Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4591-4606, September.
    2. V. Kharin & F. Zwiers & X. Zhang & M. Wehner, 2013. "Changes in temperature and precipitation extremes in the CMIP5 ensemble," Climatic Change, Springer, vol. 119(2), pages 345-357, July.
    3. Huantian Xie & Dingfang Li & Lihua Xiong, 2016. "Exploring the Regional Variance using ARMA-GARCH Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3507-3518, August.
    4. Wei Zhang & Gabriele Villarini, 2017. "Heavy precipitation is highly sensitive to the magnitude of future warming," Climatic Change, Springer, vol. 145(1), pages 249-257, November.
    5. Zhiwei Yong & Junnan Xiong & Zegen Wang & Weiming Cheng & Jiawei Yang & Quan Pang, 2021. "Relationship of extreme precipitation, surface air temperature, and dew point temperature across the Tibetan Plateau," Climatic Change, Springer, vol. 165(1), pages 1-22, March.
    6. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    7. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    8. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    9. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    10. Weibin Zhang & Xiaochun Zha & Jiaxing Li & Wei Liang & Yugai Ma & Dongmei Fan & Sha Li, 2014. "Spatiotemporal Change of Blue Water and Green Water Resources in the Headwater of Yellow River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4715-4732, October.
    11. Brennan, Timothy J., 2011. "Energy Efficiency Policy: Surveying the Puzzles," RFF Working Paper Series dp-11-27, Resources for the Future.
    12. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Qiang Zhang & Jianfeng Li & Vijay Singh & Yungang Bai, 2012. "SPI-based evaluation of drought events in Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 481-492, October.
    14. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    15. Bing-Chen Jhong & Ching-Pin Tung, 2018. "Evaluating Future Joint Probability of Precipitation Extremes with a Copula-Based Assessing Approach in Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4253-4274, October.
    16. Megan Ceronsky & David Anthoff & Cameron Hepburn & Richard S.J. Tol, 2005. "Checking The Price Tag On Catastrophe: The Social Cost Of Carbon Under Non-Linear Climate Response," Working Papers FNU-87, Research unit Sustainability and Global Change, Hamburg University, revised Aug 2005.
    17. Abedifar, Pejman & Kashizadeh, Seyed Javad & Ongena, Steven, 2024. "Flood, farms and credit: The role of branch banking in the era of climate change," Journal of Corporate Finance, Elsevier, vol. 85(C).
    18. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    19. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. M. Ciampittiello & H. Saidi & C. Dresti & M. Coluccino & L. Turconi & W. W. Little & F. Luino, 2021. "Landslides along the Lago Maggiore western coast (northern Italy): intense rainfall as trigger or concomitant cause?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1225-1250, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:13:d:10.1007_s11269-016-1454-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.