IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v120y2013i1p277-298.html
   My bibliography  Save this article

A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005

Author

Listed:
  • Mohammad Kousari
  • Mohammad Asadi Zarch
  • Hossein Ahani
  • Hemila Hakimelahi

Abstract

Reference crop evapotranspiration (ET 0 ) is one of the most important climatic parameters which plays a key role in estimating crop water demand and scheduling irrigation. Under global warming and climate change conditions, it is needed to survey the trend of ET 0 in Iran. In this study, ET 0 values were determined based on FAO-56 Penman-Monteith equation over 32 synoptic meteorological stations during 1960–2005; and analyzed spatially and temporally in monthly, seasonal and annual time scales. After removing the significant lag-1 serial correlation effect by pre-whitening, non-parametric statistical Mann–Kendall (MK) test was used to detect the trends. The slope of the changes was determined by Sen’s slope estimator. In order to facilitate in trend analysis, the 10 moving average low pass filter were also applied on the normalized annual ET 0 time series. Annual ET 0 time series and filtered ones were then classified by hierarchical clustering in three clusters and then mapped in order to show the patterns of different clusters. Results showed that the significant decreasing trends were more considerable than increasing ones. Among surveyed stations, and on an annual time scale, the highest and lowest annual values of Sen’s slope estimator were observed in Tabas with (+) 72.14 mm per decade and Shahrud with (−) 62.22 mm per decade, respectively. Results also indicated that the clustered map based on normalized and filtered annual ET 0 time series is in accordance with another map which showed spatial distribution of increasing, decreasing and non-significant trends of ET 0 on annually time scale. Exploratory and visual analysis of smoothed time series showed increasing trend in recent years especially after 1980 and 1995. In brief, the upward trend of ET 0 in recent years is a crucial issue with regard to the high cost of dam construction for agricultural aims in arid and semi-arid regions e.g. Iran. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Mohammad Kousari & Mohammad Asadi Zarch & Hossein Ahani & Hemila Hakimelahi, 2013. "A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005," Climatic Change, Springer, vol. 120(1), pages 277-298, September.
  • Handle: RePEc:spr:climat:v:120:y:2013:i:1:p:277-298
    DOI: 10.1007/s10584-013-0821-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0821-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0821-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Asadi Zarch & Hossein Malekinezhad & Mohammad Mobin & Mohammad Dastorani & Mohammad Kousari, 2011. "Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3485-3504, October.
    2. Espadafor, M. & Lorite, I.J. & Gavilán, P. & Berengena, J., 2011. "An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain," Agricultural Water Management, Elsevier, vol. 98(6), pages 1045-1061, April.
    3. Hossein Tabari & Jaefar Nikbakht & P. Hosseinzadeh Talaee, 2012. "Identification of Trend in Reference Evapotranspiration Series with Serial Dependence in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2219-2232, June.
    4. Ze-Xin Fan & Axel Thomas, 2013. "Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961–2004," Climatic Change, Springer, vol. 116(2), pages 309-325, January.
    5. Yin, Yunhe & Wu, Shaohong & Zheng, Du & Yang, Qinye, 2008. "Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China," Agricultural Water Management, Elsevier, vol. 95(1), pages 77-84, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanning Wang & Zhuoyue Peng & Hao Wu & Panpan Wang, 2022. "Spatiotemporal Variability in Precipitation Extremes in the Jianghuai Region of China and the Analysis of Its Circulation Features," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    2. Yuxin Tao & Hao Wu & Yitong Wang, 2023. "Rapid Urbanization Increased the Risk of Agricultural Waterlogging in the Huaibei Plain, China," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    3. Nam, Won-Ho & Hong, Eun-Mi & Choi, Jin-Yong, 2015. "Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?," Agricultural Water Management, Elsevier, vol. 150(C), pages 129-138.
    4. Xiaodong Ren & Diogo S. Martins & Zhongyi Qu & Paula Paredes & Luis S. Pereira, 2016. "Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: II. Trends of ETo and Weather Variables and Related Spatial Patterns," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3793-3814, September.
    5. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
    2. Nam, Won-Ho & Hong, Eun-Mi & Choi, Jin-Yong, 2015. "Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?," Agricultural Water Management, Elsevier, vol. 150(C), pages 129-138.
    3. Ali Sabziparvar & Roya Mousavi & Safar Marofi & Niaz Ebrahimipak & Majid Heidari, 2013. "An Improved Estimation of the Angstrom–Prescott Radiation Coefficients for the FAO56 Penman–Monteith Evapotranspiration Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2839-2854, June.
    4. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.
    6. Muhammad Imran Khan & Dong Liu & Qiang Fu & Qaisar Saddique & Muhammad Abrar Faiz & Tianxiao Li & Muhammad Uzair Qamar & Song Cui & Chen Cheng, 2017. "Projected Changes of Future Extreme Drought Events under Numerous Drought Indices in the Heilongjiang Province of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3921-3937, September.
    7. Babak Farjad & Anil Gupta & Danielle J. Marceau, 2016. "Annual and Seasonal Variations of Hydrological Processes Under Climate Change Scenarios in Two Sub-Catchments of a Complex Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2851-2865, June.
    8. Neda Khanmohammadi & Hossein Rezaie & Javad Behmanesh, 2022. "Investigation of Drought Trend on the Basis of the Best Obtained Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1355-1375, March.
    9. Poulomi Ganguli & M. Reddy, 2012. "Risk Assessment of Droughts in Gujarat Using Bivariate Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3301-3327, September.
    10. Zhaoqi Zeng & Wenxiang Wu & Zhaolei Li & Yang Zhou & Han Huang, 2019. "Quantitative Assessment of Agricultural Drought Risk in Southeast Gansu Province, Northwest China," Sustainability, MDPI, vol. 11(19), pages 1-21, October.
    11. Hossein Tabari & Meron Teferi Taye & Charles Onyutha & Patrick Willems, 2017. "Decadal Analysis of River Flow Extremes Using Quantile-Based Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3371-3387, September.
    12. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    13. Traore, Seydou & Wang, Yu-Min & Kerh, Tienfuan, 2010. "Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone," Agricultural Water Management, Elsevier, vol. 97(5), pages 707-714, May.
    14. Mohammad Kousari & Mohammad Dastorani & Yaghoub Niazi & Esmaeel Soheili & Mehdi Hayatzadeh & Javad Chezgi, 2014. "Trend Detection of Drought in Arid and Semi-Arid Regions of Iran Based on Implementation of Reconnaissance Drought Index (RDI) and Application of Non-Parametrical Statistical Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1857-1872, May.
    15. Javad Bazrafshan & Somayeh Hejabi, 2018. "A Non-Stationary Reconnaissance Drought Index (NRDI) for Drought Monitoring in a Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2611-2624, June.
    16. Javad Bazrafshan, 2017. "Effect of Air Temperature on Historical Trend of Long-Term Droughts in Different Climates of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4683-4698, November.
    17. Dae Jeong & Laxmi Sushama & M. Naveed Khaliq, 2014. "The role of temperature in drought projections over North America," Climatic Change, Springer, vol. 127(2), pages 289-303, November.
    18. Xiaodong Ren & Diogo S. Martins & Zhongyi Qu & Paula Paredes & Luis S. Pereira, 2016. "Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: II. Trends of ETo and Weather Variables and Related Spatial Patterns," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3793-3814, September.
    19. Tomas-Burguera, Miquel & Vicente-Serrano, Sergio M. & Grimalt, Miquel & Beguería, Santiago, 2017. "Accuracy of reference evapotranspiration (ETo) estimates under data scarcity scenarios in the Iberian Peninsula," Agricultural Water Management, Elsevier, vol. 182(C), pages 103-116.
    20. Zeeshan Shirazi & Huadong Guo & Fang Chen & Bo Yu & Bin Li, 2017. "Assessing the impact of climatic parameters and their inter-annual seasonal variability on fire activity using time series satellite products in South China (2001–2014)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1393-1416, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:120:y:2013:i:1:p:277-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.