IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i1p77-84.html
   My bibliography  Save this article

Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China

Author

Listed:
  • Yin, Yunhe
  • Wu, Shaohong
  • Zheng, Du
  • Yang, Qinye

Abstract

No abstract is available for this item.

Suggested Citation

  • Yin, Yunhe & Wu, Shaohong & Zheng, Du & Yang, Qinye, 2008. "Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China," Agricultural Water Management, Elsevier, vol. 95(1), pages 77-84, January.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:1:p:77-84
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00218-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacovides, C. P. & Kontoyiannis, H., 1995. "Statistical procedures for the evaluation of evapotranspiration computing models," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 365-371, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. MardanDoost, B. & Brookfield, A.E. & Feddema, J. & Sturm, B. & Kastens, J. & Peterson, D. & Bishop, C., 2019. "Estimating irrigation demand with geospatial and in-situ data: Application to the high plains aquifer, Kansas, USA," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Ali Sabziparvar & Roya Mousavi & Safar Marofi & Niaz Ebrahimipak & Majid Heidari, 2013. "An Improved Estimation of the Angstrom–Prescott Radiation Coefficients for the FAO56 Penman–Monteith Evapotranspiration Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2839-2854, June.
    3. Traore, Seydou & Wang, Yu-Min & Kerh, Tienfuan, 2010. "Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone," Agricultural Water Management, Elsevier, vol. 97(5), pages 707-714, May.
    4. Paweł Bogawski & Ewa Bednorz, 2014. "Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5021-5038, November.
    5. Hou, L.G. & Xiao, H.L. & Si, J.H. & Xiao, S.C. & Zhou, M.X. & Yang, Y.G., 2010. "Evapotranspiration and crop coefficient of Populus euphratica Oliv forest during the growing season in the extreme arid region northwest China," Agricultural Water Management, Elsevier, vol. 97(2), pages 351-356, February.
    6. Bannayan, M. & Eyshi Rezaei, E. & Hoogenboom, G., 2013. "Determining optimum planting dates for rainfed wheat using the precipitation uncertainty model and adjusted crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 126(C), pages 56-63.
    7. Liu, Wei & Fu, Qiang & Meng, Jun & Li, Tianxiao & Cheng, Kun, 2019. "Simulation and analysis of return flow at the field scale in the northern rice irrigation area of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    8. Mohammad Kousari & Mohammad Asadi Zarch & Hossein Ahani & Hemila Hakimelahi, 2013. "A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005," Climatic Change, Springer, vol. 120(1), pages 277-298, September.
    9. Nam, Won-Ho & Hong, Eun-Mi & Choi, Jin-Yong, 2015. "Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?," Agricultural Water Management, Elsevier, vol. 150(C), pages 129-138.
    10. Bei Wang & Xin Li & Gaofeng Zhu & Chunlin Huang & Chunfeng Ma & Meibao Tan & Juntao Zhong, 2022. "Evaluating the Impact of Dynamic Changes in Grasslands on the Critical Ecosystem Service Value of Yanchi County in China from 2000 to 2015," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    11. Zeng, Yuan-Fu & Chen, Ching-Tien & Lin, Gwo-Fong, 2023. "Practical application of an intelligent irrigation system to rice paddies in Taiwan," Agricultural Water Management, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvar-Beltrán, Jorge & Saturnin, Coulibaly & Grégoire, Baki & Camacho, Jose Luís & Dao, Abdalla & Migraine, Jean Baptiste & Marta, Anna Dalla, 2023. "Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    4. Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
    5. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Sentelhas, Paulo C. & Gillespie, Terry J. & Santos, Eduardo A., 2010. "Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 635-644, May.
    7. Jacovides, C. P., 1998. "Reply to comment on "Statistical procedures for the evaluation of evapotranspiration computing models"," Agricultural Water Management, Elsevier, vol. 37(1), pages 95-97, June.
    8. Li, Na & Li, Yi & Yang, Qiliang & Biswas, Asim & Dong, Hezhong, 2024. "Simulating climate change impacts on cotton using AquaCrop model in China," Agricultural Systems, Elsevier, vol. 216(C).
    9. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    10. Singh, D.K. & Rajput, T.B.S. & Singh, D.K. & Sikarwar, H.S. & Sahoo, R.N. & Ahmad, T., 2006. "Simulation of soil wetting pattern with subsurface drip irrigation from line source," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 130-134, May.
    11. DehghaniSanij, Hossein & Yamamoto, Tahei & Rasiah, Velu, 2004. "Assessment of evapotranspiration estimation models for use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 64(2), pages 91-106, January.
    12. Montoya, F. & Camargo, D. & Domínguez, A. & Ortega, J.F. & Córcoles, J.I., 2018. "Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 203(C), pages 297-310.
    13. Ahmadzadeh Araji, Hamidreza & Wayayok, Aimrun & Massah Bavani, Alireza & Amiri, Ebrahim & Abdullah, Ahmad Fikri & Daneshian, Jahanfar & Teh, C.B.S., 2018. "Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models," Agricultural Water Management, Elsevier, vol. 205(C), pages 63-71.
    14. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    15. Jiandong Liu & Tao Pan & Deliang Chen & Xiuji Zhou & Qiang Yu & Gerald N. Flerchinger & De Li Liu & Xintong Zou & Hans W. Linderholm & Jun Du & Dingrong Wu & Yanbo Shen, 2017. "An Improved Ångström-Type Model for Estimating Solar Radiation over the Tibetan Plateau," Energies, MDPI, vol. 10(7), pages 1-28, July.
    16. Jacovides, C.P. & Kaskaoutis, D.G. & Tymvios, F.S. & Asimakopoulos, D.N., 2004. "Application of SPCTRAL2 parametric model in estimating spectral solar irradiances over polluted Athens atmosphere," Renewable Energy, Elsevier, vol. 29(7), pages 1109-1119.
    17. Ahmed M. S. Kheir & Hiba M. Alkharabsheh & Mahmoud F. Seleiman & Adel M. Al-Saif & Khalil A. Ammar & Ahmed Attia & Medhat G. Zoghdan & Mahmoud M. A. Shabana & Hesham Aboelsoud & Calogero Schillaci, 2021. "Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions," Land, MDPI, vol. 10(12), pages 1-16, December.
    18. Matin Ahooghalandari & Mehdi Khiadani & Mina Esmi Jahromi, 2016. "Developing Equations for Estimating Reference Evapotranspiration in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3815-3828, September.
    19. Berti, Antonio & Tardivo, Gianmarco & Chiaudani, Alessandro & Rech, Francesco & Borin, Maurizio, 2014. "Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy," Agricultural Water Management, Elsevier, vol. 140(C), pages 20-25.
    20. Kheir, Ahmed M.S. & Alrajhi, Abdullah A. & Ghoneim, Adel M. & Ali, Esmat F. & Magrashi, Ali & Zoghdan, Medhat G. & Abdelkhalik, Sedhom A.M. & Fahmy, Ahmed E. & Elnashar, Abdelrazek, 2021. "Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions," Agricultural Water Management, Elsevier, vol. 256(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:1:p:77-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.