IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i2p301-317.html
   My bibliography  Save this article

Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model

Author

Listed:
  • Huanghe Gu
  • Guiling Wang
  • Zhongbo Yu
  • Rui Mei

Abstract

This paper assesses future climate changes over East and South Asia using a regional climate model (RegCM4) with a 50 km spatial resolution. To evaluate the model performance, RegCM4 is driven with “perfect boundary forcing” from the reanalysis data during 1970–1999 to simulate the present day climate. The model performs well in reproducing not only the mean climate and seasonality but also most of the chosen indicators of climate extremes. Future climate changes are evaluated based on two experiments driven with boundary forcing from the European-Hamburg general climate model (ECHAM5), one for the present (1970–1999) and one for the SRES A1B future scenario (2070–2099). The model predicts an annual temperature increase of about 3°–5° (smaller over the ocean and larger over the land), and an increase of annual precipitation over most of China north of 30°N and a decrease or little change in the rest of China, India and Indochina. For temperature-related extreme indicators in the future, the model predicts a generally longer growing season, more hot days in summer, and less frost days in winter. For precipitation-related extremes, the number of days with more than 10 mm of rainfall is predicted to increase north of 30°N and decrease in the south, and the maximum five-day rainfall amount and daily intensity will increase across the whole model domain. In addition, the maximum number of consecutive dry days is predicted to increase over most of the model domain, south of 40°N. Most of the Yangtze River Basin in China stands out as “hotspots” of extreme precipitation changes, with the strongest increases of daily rain intensity, maximum five-day rain amount, and the number of consecutive dry days, suggesting increased risks of both floods and droughts. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Huanghe Gu & Guiling Wang & Zhongbo Yu & Rui Mei, 2012. "Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model," Climatic Change, Springer, vol. 114(2), pages 301-317, September.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:2:p:301-317
    DOI: 10.1007/s10584-012-0411-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0411-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0411-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anji Seth & Sara Rauscher & Maisa Rojas & Alessandra Giannini & Suzana Camargo, 2011. "Enhanced spring convective barrier for monsoons in a warmer world?," Climatic Change, Springer, vol. 104(2), pages 403-414, January.
    2. Quirin Schiermeier, 2011. "Increased flood risk linked to global warming," Nature, Nature, vol. 470(7334), pages 316-316, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neha Mittal & Ashok Mishra & Rajendra Singh & Pankaj Kumar, 2014. "Assessing future changes in seasonal climatic extremes in the Ganges river basin using an ensemble of regional climate models," Climatic Change, Springer, vol. 123(2), pages 273-286, March.
    2. Mohsen Abbasnia, 2019. "Climatic characteristics of heat waves under climate change: a case study of mid-latitudes, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 637-656, April.
    3. Nazan An & Mustafa Tufan Turp & Murat Türkeş & Mehmet Levent Kurnaz, 2020. "Mid-Term Impact of Climate Change on Hazelnut Yield," Agriculture, MDPI, vol. 10(5), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    2. Enliang Guo & Jiquan Zhang & Yongfang Wang & Ha Si & Feng Zhang, 2016. "Dynamic risk assessment of waterlogging disaster for maize based on CERES-Maize model in Midwest of Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1747-1761, September.
    3. N. Zafirah & N. A. Nurin & M. S. Samsurijan & M. H. Zuknik & M. Rafatullah & M. I. Syakir, 2017. "Sustainable Ecosystem Services Framework for Tropical Catchment Management: A Review," Sustainability, MDPI, vol. 9(4), pages 1-25, April.
    4. Tian Qiao & Hussein Hoteit & Marwan Fahs, 2021. "Semi-Analytical Solution to Assess CO 2 Leakage in the Subsurface through Abandoned Wells," Energies, MDPI, vol. 14(9), pages 1-15, April.
    5. Swenja Surminski & Delioma Oramas-Dorta, 2013. "Do flood insurance schemes in developing countries provide incentives to reduce physical risks?," GRI Working Papers 119, Grantham Research Institute on Climate Change and the Environment.
    6. Hong Ngoc Nguyen & Hiroatsu Fukuda & Minh Nguyet Nguyen, 2024. "Assessment of the Susceptibility of Urban Flooding Using GIS with an Analytical Hierarchy Process in Hanoi, Vietnam," Sustainability, MDPI, vol. 16(10), pages 1-24, May.
    7. Shibly Shahrier & Koji Kotani & Makoto Kakinaka, 2016. "Social Value Orientation and Capitalism in Societies," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    8. Salvador Gil-Guirado & José-Antonio Espín-Sánchez & María Rosario Prieto, 2016. "Can we learn from the past? Four hundred years of changes in adaptation to floods and droughts. Measuring the vulnerability in two Hispanic cities," Climatic Change, Springer, vol. 139(2), pages 183-200, November.
    9. Zhixia Wu & Xiazhong Zheng & Yijun Chen & Shan Huang & Wenli Hu & Chenfei Duan, 2023. "Urban Flood Loss Assessment and Index Insurance Compensation Estimation by Integrating Remote Sensing and Rainfall Multi-Source Data: A Case Study of the 2021 Henan Rainstorm," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    10. Junliang Qiu & Xiankun Yang & Bowen Cao & Zhilong Chen & Yuxuan Li, 2020. "Effects of Urbanization on Regional Extreme-Temperature Changes in China, 1960–2016," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    11. Chengjing Nie & Hairong Li & Linsheng Yang & Shaohong Wu & Yi Liu & Yongfeng Liao, 2012. "Spatial and temporal changes in flooding and the affecting factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 425-439, March.
    12. L. Mariotti & I. Diallo & E. Coppola & F. Giorgi, 2014. "Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections," Climatic Change, Springer, vol. 125(1), pages 53-65, July.
    13. Rachel James & Richard Washington, 2013. "Changes in African temperature and precipitation associated with degrees of global warming," Climatic Change, Springer, vol. 117(4), pages 859-872, April.
    14. Chang, Carolyn W. & Wang, Yu-Jen & Yu, Min-Teh, 2020. "Catastrophe bond spread and hurricane arrival frequency," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    15. Maria Matos Silva & João Pedro Costa, 2017. "Urban Flood Adaptation through Public Space Retrofits: The Case of Lisbon (Portugal)," Sustainability, MDPI, vol. 9(5), pages 1-30, May.
    16. Surminski, Swenja & Oramas-Dorta, Delioma, 2013. "Flood insurance schemes and climate adaptation in developing countries," LSE Research Online Documents on Economics 66294, London School of Economics and Political Science, LSE Library.
    17. Wei Zhang & Gabriele Villarini & Michael Wehner, 2019. "Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures," Climatic Change, Springer, vol. 154(1), pages 257-271, May.
    18. Salvatore Pascale & Sarah B. Kapnick & Thomas L. Delworth & Hugo G. Hidalgo & William F. Cooke, 2021. "Natural variability vs forced signal in the 2015–2019 Central American drought," Climatic Change, Springer, vol. 168(3), pages 1-21, October.
    19. Moinul Islam & Koji Kotani, 2013. "Six or four seasons? Perceptions of climatic changes and people's cooperative attitudes toward ood protection in Bangladesh," Working Papers EMS_2013_06, Research Institute, International University of Japan.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:2:p:301-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.