IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2452-d543312.html
   My bibliography  Save this article

Semi-Analytical Solution to Assess CO 2 Leakage in the Subsurface through Abandoned Wells

Author

Listed:
  • Tian Qiao

    (Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia)

  • Hussein Hoteit

    (Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia)

  • Marwan Fahs

    (Institut Terre et Environnement de Strasbourg, Université de Strasbourg, CNRS, ENGEES, UMR 7063, 67081 Strasbourg, France)

Abstract

Geological carbon storage is an effective method capable of reducing carbon dioxide (CO 2 ) emissions at significant scales. Subsurface reservoirs with sealing caprocks can provide long-term containment for the injected fluid. Nevertheless, CO 2 leakage is a major concern. The presence of abandoned wells penetrating the reservoir caprock may cause leakage flow-paths for CO 2 to the overburden. Assessment of time-varying leaky wells is a need. In this paper, we propose a new semi-analytical approach based on pressure-transient analysis to model the behavior of CO 2 leakage and corresponding pressure distribution within the storage site and the overburden. Current methods assume instantaneous leakage of CO 2 occurring with injection, which is not realistic. In this work, we employ the superposition in time and space to solve the diffusivity equation in 2D radial flow to approximate the transient pressure in the reservoirs. Fluid and rock compressibilities are taken into consideration, which allow calculating the breakthrough time and the leakage rate of CO 2 to the overburden accurately. We use numerical simulations to verify the proposed time-dependent semi-analytical solution. The results show good agreement in both pressure and leakage rates. Sensitivity analysis is then conducted to assess different CO 2 leakage scenarios to the overburden. The developed semi-analytical solution provides a new simple and practical approach to assess the potential of CO 2 leakage outside the storage site. This approach is an alternative to numerical methods when detailed simulations are not feasible. Furthermore, the proposed solution can also be used to verify numerical codes, which often exhibit numerical artifacts.

Suggested Citation

  • Tian Qiao & Hussein Hoteit & Marwan Fahs, 2021. "Semi-Analytical Solution to Assess CO 2 Leakage in the Subsurface through Abandoned Wells," Energies, MDPI, vol. 14(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2452-:d:543312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quirin Schiermeier, 2011. "Increased flood risk linked to global warming," Nature, Nature, vol. 470(7334), pages 316-316, February.
    2. Mehdi Zeidouni & Nam H. Tran & Muhammad D. Munawar, 2017. "Interpretation of above†zone pressure influence time to characterize CO2 leakage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 1050-1064, December.
    3. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    2. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    3. Ahmad Taki & Viet Ha Xuan Doan, 2022. "A New Framework for Sustainable Resilient Houses on the Coastal Areas of Khanh Hoa, Vietnam," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    4. Meri Davlasheridze & Qin Fan & Wesley Highfield & Jiaochen Liang, 2021. "Economic impacts of storm surge events: examining state and national ripple effects," Climatic Change, Springer, vol. 166(1), pages 1-20, May.
    5. Enliang Guo & Jiquan Zhang & Yongfang Wang & Ha Si & Feng Zhang, 2016. "Dynamic risk assessment of waterlogging disaster for maize based on CERES-Maize model in Midwest of Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1747-1761, September.
    6. Tsvetan Tsvetanov & Farhed Shah, 2013. "The economic value of delaying adaptation to sea-level rise: An application to coastal properties in Connecticut," Climatic Change, Springer, vol. 121(2), pages 177-193, November.
    7. Eoin O'Neill & Finbarr Brereton & Harutyun Shahumyan & J. Peter Clinch, 2016. "The Impact of Perceived Flood Exposure on Flood‐Risk Perception: The Role of Distance," Risk Analysis, John Wiley & Sons, vol. 36(11), pages 2158-2186, November.
    8. N. Zafirah & N. A. Nurin & M. S. Samsurijan & M. H. Zuknik & M. Rafatullah & M. I. Syakir, 2017. "Sustainable Ecosystem Services Framework for Tropical Catchment Management: A Review," Sustainability, MDPI, vol. 9(4), pages 1-25, April.
    9. Edwin A. Hernández-Delgado & Ricardo Laureano, 2024. "Bringing Back Reef Fish: Sustainable Impacts of Community-Based Restoration of Elkhorn Coral ( Acropora palmata ) in Vega Baja, Puerto Rico (2008–2023)," Sustainability, MDPI, vol. 16(14), pages 1-43, July.
    10. Joseph Park & Jayantha Obeysekera & Michelle Irizarry & Jenifer Barnes & Paul Trimble & Winifred Park-Said, 2011. "Storm surge projections and implications for water management in South Florida," Climatic Change, Springer, vol. 107(1), pages 109-128, July.
    11. Jianzhi Dong & Fangni Lei & Wade T. Crow, 2022. "Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Qian Ke & Jiangshan Yin & Jeremy D. Bricker & Nicholas Savage & Erasmo Buonomo & Qinghua Ye & Paul Visser & Guangtao Dong & Shuai Wang & Zhan Tian & Laixiang Sun & Ralf Toumi & Sebastiaan N. Jonkman, 2021. "An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 671-703, October.
    13. Davina L. Passeri & Matthew V. Bilskie & Nathaniel G. Plant & Joseph W. Long & Scott C. Hagen, 2018. "Dynamic modeling of barrier island response to hurricane storm surge under future sea level rise," Climatic Change, Springer, vol. 149(3), pages 413-425, August.
    14. Lee, Ji Yun & Ellingwood, Bruce R., 2017. "A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 100-107.
    15. Swenja Surminski & Delioma Oramas-Dorta, 2013. "Do flood insurance schemes in developing countries provide incentives to reduce physical risks?," GRI Working Papers 119, Grantham Research Institute on Climate Change and the Environment.
    16. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    17. Jennifer Irish & Alison Sleath & Mary Cialone & Thomas Knutson & Robert Jensen, 2014. "Simulations of Hurricane Katrina (2005) under sea level and climate conditions for 1900," Climatic Change, Springer, vol. 122(4), pages 635-649, February.
    18. Hong Ngoc Nguyen & Hiroatsu Fukuda & Minh Nguyet Nguyen, 2024. "Assessment of the Susceptibility of Urban Flooding Using GIS with an Analytical Hierarchy Process in Hanoi, Vietnam," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    19. Lena Hinz & Anna-Maria Weber & Lara Koegst & Olaf Kühne, 2024. "A Neopragmatic Perspective on the Processual Nature of Landscape—Coastal Land Loss in Louisiana in the Context of Scientific Findings, Social Patterns of Interpretation, and Individual Experience," Sustainability, MDPI, vol. 16(5), pages 1-26, March.
    20. Shibly Shahrier & Koji Kotani & Makoto Kakinaka, 2016. "Social Value Orientation and Capitalism in Societies," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2452-:d:543312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.