IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v129y2015i1p183-196.html
   My bibliography  Save this article

Quantifying the response of cotton production in eastern Australia to climate change

Author

Listed:
  • Allyson Williams
  • Neil White
  • Shahbaz Mushtaq
  • Geoff Cockfield
  • Brendan Power
  • Louis Kouadio

Abstract

The paper evaluates the effect of future climate change (as per the CSIRO Mk3.5 A1FI future climate projection) on cotton yield in Southern Queensland and Northern NSW, eastern Australia by using of the biophysical simulation model APSIM (Agricultural Production Systems sIMulator). The simulations of cotton production show that changes in the influential meteorological parameters caused by climate change would lead to decreased future cotton yields without the effect of CO 2 fertilisation. By 2050 the yields would decrease by 17 %. Including the effects of CO 2 fertilisation ameliorates the effect of decreased water availability and yields increase by 5.9 % by 2030, but then decrease by 3.6 % in 2050. Importantly, it was necessary to increase irrigation amounts by almost 50 % to maintain adequate soil moisture levels. The effect of CO 2 was found to have an important positive impact of the yield in spite of deleterious climate change. This implies that the physiological response of plants to climate change needs to be thoroughly understood to avoid making erroneous projections of yield and potentially stifling investment or increasing risk. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Allyson Williams & Neil White & Shahbaz Mushtaq & Geoff Cockfield & Brendan Power & Louis Kouadio, 2015. "Quantifying the response of cotton production in eastern Australia to climate change," Climatic Change, Springer, vol. 129(1), pages 183-196, March.
  • Handle: RePEc:spr:climat:v:129:y:2015:i:1:p:183-196
    DOI: 10.1007/s10584-014-1305-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1305-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1305-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juhwan Lee & Steven Gryze & Johan Six, 2011. "Effect of climate change on field crop production in California’s Central Valley," Climatic Change, Springer, vol. 109(1), pages 335-353, December.
    2. Qunying Luo, 2011. "Temperature thresholds and crop production: a review," Climatic Change, Springer, vol. 109(3), pages 583-598, December.
    3. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447, January.
    4. Garnaut,Ross, 2011. "The Garnaut Review 2011," Cambridge Books, Cambridge University Press, number 9781107691681, January.
    5. Ian Watterson, 2012. "Understanding and partitioning future climates for Australian regions from CMIP3 using ocean warming indices," Climatic Change, Springer, vol. 111(3), pages 903-922, April.
    6. John Quiggin & David Adamson & Sarah Chambers & Peggy Schrobback, 2010. "Climate Change, Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling Basin in Australia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 531-554, December.
    7. Witsanu Attavanich & Bruce McCarl, 2014. "How is CO 2 affecting yields and technological progress? A statistical analysis," Climatic Change, Springer, vol. 124(4), pages 747-762, June.
    8. repec:bla:canjag:v:58:y:2010:i:s1:p:531-554 is not listed on IDEAS
    9. Luo, Qunying & Bange, Michael & Clancy, Loretta, 2014. "Cotton crop phenology in a new temperature regime," Ecological Modelling, Elsevier, vol. 285(C), pages 22-29.
    10. A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
    11. Hearn, A. B., 1994. "OZCOT: A simulation model for cotton crop management," Agricultural Systems, Elsevier, vol. 44(3), pages 257-299.
    12. Kirby, Mac & Bark, Rosalind & Connor, Jeff & Qureshi, M. Ejaz & Keyworth, Scott, 2014. "Sustainable irrigation: How did irrigated agriculture in Australia's Murray–Darling Basin adapt in the Millennium Drought?," Agricultural Water Management, Elsevier, vol. 145(C), pages 154-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghahramani, Afshin & Moore, Andrew D., 2016. "Impact of climate changes on existing crop-livestock farming systems," Agricultural Systems, Elsevier, vol. 146(C), pages 142-155.
    2. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    3. Li, Na & Yao, Ning & Li, Yi & Chen, Junqing & Liu, Deli & Biswas, Asim & Li, Linchao & Wang, Tianxue & Chen, Xinguo, 2021. "A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches," Agricultural Systems, Elsevier, vol. 193(C).
    4. Adhikari, Pradip & Ale, Srinivasulu & Bordovsky, James P. & Thorp, Kelly R. & Modala, Naga R. & Rajan, Nithya & Barnes, Edward M., 2016. "Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model," Agricultural Water Management, Elsevier, vol. 164(P2), pages 317-330.
    5. Sarah Ann Wheeler & Ying Xu & Alec Zuo, 2020. "Modelling the climate, water and socio-economic drivers of farmer exit in the Murray-Darling Basin," Climatic Change, Springer, vol. 158(3), pages 551-574, February.
    6. Chen, Yong & Marek, Gary W. & Marek, Thomas H. & Moorhead, Jerry E. & Heflin, Kevin R. & Brauer, David K. & Gowda, Prasanna H. & Srinivasan, Raghavan, 2019. "Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model," Agricultural Water Management, Elsevier, vol. 221(C), pages 13-24.
    7. Williams, Allyson & Mushtaq, Shahbaz & Kouadio, Louis & Power, Brendan & Marcussen, Torben & McRae, David & Cockfield, Geoff, 2018. "An investigation of farm-scale adaptation options for cotton production in the face of future climate change and water allocation policies in southern Queensland, Australia," Agricultural Water Management, Elsevier, vol. 196(C), pages 124-132.
    8. Desheng Wang & Chengkun Wang & Lichao Xu & Tiecheng Bai & Guozheng Yang, 2022. "Simulating Growth and Evaluating the Regional Adaptability of Cotton Fields with Non-Film Mulching in Xinjiang," Agriculture, MDPI, vol. 12(7), pages 1-20, June.
    9. Chen, Yong & Ale, Srinivasulu & Rajan, Nithya & Srinivasan, Raghavan, 2017. "Modeling the effects of land use change from cotton (Gossypium hirsutum L.) to perennial bioenergy grasses on watershed hydrology and water quality under changing climate," Agricultural Water Management, Elsevier, vol. 192(C), pages 198-208.
    10. Ghahramani, Afshin & Bowran, David, 2018. "Transformative and systemic climate change adaptations in mixed crop-livestock farming systems," Agricultural Systems, Elsevier, vol. 164(C), pages 236-251.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    2. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    3. Sheng, Yu & Xu, Xinpeng, 2019. "The productivity impact of climate change: Evidence from Australia's Millennium drought," Economic Modelling, Elsevier, vol. 76(C), pages 182-191.
    4. Nelson, Tim & Pascoe, Owen & Calais, Prabpreet & Mitchell, Lily & McNeill, Judith, 2019. "Efficient integration of climate and energy policy in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 178-193.
    5. Garnaut, Ross, 2012. "The contemporary China resources boom," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(2), pages 1-22.
    6. Larry Kreiser & Ana Yábar Sterling & Pedro Herrera & Janet E. Milne & Hope Ashiabor (ed.), 2012. "Carbon Pricing, Growth and the Environment," Books, Edward Elgar Publishing, number 15052.
    7. Adamson, David & Loch, Adam, 2014. "Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure," Agricultural Water Management, Elsevier, vol. 145(C), pages 134-144.
    8. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    9. Grafton, Rupert & Jiang, Qiang, 2011. "Economic effects of water recovery on irrigated agriculture in the Murray-Darling Basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 1-13.
    10. John Foster & William Paul Bell & Craig Froome & Phil Wild & Liam Wagner & Deepak Sharma & Suwin Sandu & Suchi Misra & Ravindra Bagia, 2012. "Institutional adaptability to redress electricity infrastructure vulnerability due to climate change," Energy Economics and Management Group Working Papers 7-2012, School of Economics, University of Queensland, Australia.
    11. David Adamson & Adam Loch, 2018. "Achieving environmental flows where buyback is constrained," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 83-102, January.
    12. Sarah Ann Wheeler & Ying Xu & Alec Zuo, 2020. "Modelling the climate, water and socio-economic drivers of farmer exit in the Murray-Darling Basin," Climatic Change, Springer, vol. 158(3), pages 551-574, February.
    13. Tas Thamo & Donkor Addai & Marit E. Kragt & Ross S. Kingwell & David J. Pannell & Michael J. Robertson, 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 841-865, October.
    14. Chua, Wai Fong & Fiedler, Tanya & Boedker, Christina, 2024. "Projecting, infrastructuring and calculating: From an In vitro to an In vivo carbon market," Accounting, Organizations and Society, Elsevier, vol. 112(C).
    15. Perry, Neil & Rosewarne, Stuart & White, Graham, 2013. "Clean energy policy: Taxing carbon and the illusion of the equity objective," Ecological Economics, Elsevier, vol. 90(C), pages 104-113.
    16. Pearse, Rebecca, 2016. "The coal question that emissions trading has not answered," Energy Policy, Elsevier, vol. 99(C), pages 319-328.
    17. Spencer, Thomas & Carole-Anne, Senit & Anna, Drutschinin, 2012. "The political economy of Australia’s climate change and clean energy legislation: lessons learned," MPRA Paper 43669, University Library of Munich, Germany.
    18. Desheng Wang & Chengkun Wang & Lichao Xu & Tiecheng Bai & Guozheng Yang, 2022. "Simulating Growth and Evaluating the Regional Adaptability of Cotton Fields with Non-Film Mulching in Xinjiang," Agriculture, MDPI, vol. 12(7), pages 1-20, June.
    19. Frank Jotzo & Steve Hatfield-Dodds, 2011. "Price Floors in Emissions Trading to Reduce Policy Related Investment Risks: an Australian View," CCEP Working Papers 1105, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    20. Colin Hunt, 2011. "Prospects for meeting Australia’s 2020 carbon targets, given a growing economy, uncertain international carbon markets and the slow emergence of renewable energies," Discussion Papers Series 440, School of Economics, University of Queensland, Australia.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:129:y:2015:i:1:p:183-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.