IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i6p1645-1666.html
   My bibliography  Save this article

Influence of unbalanced operation time means and uneven buffer allocation on unreliable merging assembly line efficiency

Author

Listed:
  • Rodrigo Romero-Silva
  • Sabry Shaaban

Abstract

Unbalanced, unreliable (UR), unpaced, merging assembly lines are simulated in this study with varying line lengths, buffer storage capacities, imbalance degrees and unequal mean operation time configurations and uneven buffer capacity (BC) allocation. This paper contributes to the literature by suggesting that, in many cases, imbalance can improve merging lines’ performance, as compared to a corresponding balanced merging line. It was found that an inverted bowl or descending patterns for mean operation times (MTs), and an inverted bowl (concentrating BC towards the centre of the line) or an ascending pattern for buffer allocation, result in higher throughput (TR). In terms of average buffer level (ABL), the best pattern is a monotone decreasing order regarding MTs and a monotone increasing order with respect to BC allocation. Additionally, it was found that when considering a profit function, the best performing patterns for UR lines tend to be the patterns that reduce ABL, even when considering very low inventory holding costs; contrary to the behaviour of the profit function in reliable lines, which suggests that either patterns that increase TR or reduce ABL can lead to a good performance, depending on the values of the unitary inventory holding costs.

Suggested Citation

  • Rodrigo Romero-Silva & Sabry Shaaban, 2019. "Influence of unbalanced operation time means and uneven buffer allocation on unreliable merging assembly line efficiency," International Journal of Production Research, Taylor & Francis Journals, vol. 57(6), pages 1645-1666, March.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:6:p:1645-1666
    DOI: 10.1080/00207543.2018.1495344
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1495344
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1495344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federica Costa & Matthias Thürer & Alberto Portioli-Staudacher, 2023. "Heterogeneous worker multi-functionality and efficiency in dual resource constrained manufacturing lines: an assessment by simulation," Operations Management Research, Springer, vol. 16(3), pages 1476-1489, September.
    2. Sabry Shaaban & Rodrigo Romero-Silva, 2021. "Performance of merging lines with uneven buffer capacity allocation: the effects of unreliability under different inventory-related costs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1253-1288, December.
    3. Mehmet Ulaş Koyuncuoğlu & Leyla Demir, 2021. "A comparison of combat genetic and big bang–big crunch algorithms for solving the buffer allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1529-1546, August.
    4. Romero-Silva, Rodrigo & Shaaban, Sabry & Marsillac, Erika & Laarraf, Zouhair, 2021. "The impact of unequal processing time variability on reliable and unreliable merging line performance," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    6. Amber Iqbal & M. Nasir Bashir & Asna Alam & M. Bilal Asif & Iqra Arshad, 2020. "Implementation of Lean Methodology on the Main Assembly Line of an Automotive Plant to Enhance Productivity," Journal of ICT, Design, Engineering and Technological Science, Juhriyansyah Dalle, vol. 4(1), pages 16-22.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:6:p:1645-1666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.