IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v22y2014i3p567-589.html
   My bibliography  Save this article

Unified encoding for hyper-heuristics with application to bioinformatics

Author

Listed:
  • Aleksandra Swiercz
  • Edmund Burke
  • Mateusz Cichenski
  • Grzegorz Pawlak
  • Sanja Petrovic
  • Tomasz Zurkowski
  • Jacek Blazewicz

Abstract

This paper introduces a new approach to applying hyper-heuristic algorithms to solve combinatorial problems with less effort, taking into account the modelling and algorithm construction process. We propose a unified encoding of a solution and a set of low level heuristics which are domain-independent and which change the solution itself. This approach enables us to address NP-hard problems and generate good approximate solutions in a reasonable time without a large amount of additional work required to tailor search methodologies for the problem in hand. In particular, we focused on solving DNA sequencing by hybrydization with errors, which is known to be strongly NP-hard. The approach was extensively tested by solving multiple instances of well-known combinatorial problems and compared with results generated by meta heuristics that have been tailored for specific problem domains. Copyright The Author(s) 2014

Suggested Citation

  • Aleksandra Swiercz & Edmund Burke & Mateusz Cichenski & Grzegorz Pawlak & Sanja Petrovic & Tomasz Zurkowski & Jacek Blazewicz, 2014. "Unified encoding for hyper-heuristics with application to bioinformatics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 567-589, September.
  • Handle: RePEc:spr:cejnor:v:22:y:2014:i:3:p:567-589
    DOI: 10.1007/s10100-013-0321-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-013-0321-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-013-0321-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    2. Edmund K. Burke & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & John R. Woodward, 2010. "A Classification of Hyper-heuristic Approaches," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 449-468, Springer.
    3. Burke, Edmund K. & McCollum, Barry & Meisels, Amnon & Petrovic, Sanja & Qu, Rong, 2007. "A graph-based hyper-heuristic for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 177-192, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    2. Hermann Maurer & Rizwan Mehmood, 2015. "Merging image databases as an example for information integration," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(2), pages 441-458, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    2. Lale Özbakır & Gökhan Seçme, 2022. "A hyper-heuristic approach for stochastic parallel assembly line balancing problems with equipment costs," Operational Research, Springer, vol. 22(1), pages 577-614, March.
    3. Kheiri, Ahmed & Özcan, Ender, 2016. "An iterated multi-stage selection hyper-heuristic," European Journal of Operational Research, Elsevier, vol. 250(1), pages 77-90.
    4. Zhang, Yuchang & Bai, Ruibin & Qu, Rong & Tu, Chaofan & Jin, Jiahuan, 2022. "A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties," European Journal of Operational Research, Elsevier, vol. 300(2), pages 418-427.
    5. Yanwei Zhao & Longlong Leng & Chunmiao Zhang, 2021. "A novel framework of hyper-heuristic approach and its application in location-routing problem with simultaneous pickup and delivery," Operational Research, Springer, vol. 21(2), pages 1299-1332, June.
    6. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    7. Chen, Yujie & Cowling, Peter & Polack, Fiona & Remde, Stephen & Mourdjis, Philip, 2017. "Dynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage system," European Journal of Operational Research, Elsevier, vol. 257(2), pages 494-510.
    8. Carlos Contreras Bolton & Gustavo Gatica & Víctor Parada, 2013. "Automatically Generated Algorithms for the Vertex Coloring Problem," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    9. Aleksandra Swiercz & Wojciech Frohmberg & Michal Kierzynka & Pawel Wojciechowski & Piotr Zurkowski & Jan Badura & Artur Laskowski & Marta Kasprzak & Jacek Blazewicz, 2018. "GRASShopPER—An algorithm for de novo assembly based on GPU alignments," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    10. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    11. Longlong Leng & Yanwei Zhao & Zheng Wang & Jingling Zhang & Wanliang Wang & Chunmiao Zhang, 2019. "A Novel Hyper-Heuristic for the Biobjective Regional Low-Carbon Location-Routing Problem with Multiple Constraints," Sustainability, MDPI, vol. 11(6), pages 1-31, March.
    12. Nelishia Pillay & Ender Özcan, 2019. "Automated generation of constructive ordering heuristics for educational timetabling," Annals of Operations Research, Springer, vol. 275(1), pages 181-208, April.
    13. Swan, Jerry & Adriaensen, Steven & Brownlee, Alexander E.I. & Hammond, Kevin & Johnson, Colin G. & Kheiri, Ahmed & Krawiec, Faustyna & Merelo, J.J. & Minku, Leandro L. & Özcan, Ender & Pappa, Gisele L, 2022. "Metaheuristics “In the Large”," European Journal of Operational Research, Elsevier, vol. 297(2), pages 393-406.
    14. Ahmed, Leena & Mumford, Christine & Kheiri, Ahmed, 2019. "Solving urban transit route design problem using selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 274(2), pages 545-559.
    15. Lagos, Felipe & Pereira, Jordi, 2024. "Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 70-91.
    16. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Swan, Jerry & Carpio, Martin & Puga, Hector & Burke, Edmund K., 2014. "Effective learning hyper-heuristics for the course timetabling problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 77-86.
    17. Franck Butelle & Laurent Alfandari & Camille Coti & Lucian Finta & Lucas Létocart & Gérard Plateau & Frédéric Roupin & Antoine Rozenknop & Roberto Wolfler Calvo, 2016. "Fast machine reassignment," Annals of Operations Research, Springer, vol. 242(1), pages 133-160, July.
    18. Nelishia Pillay, 2016. "A review of hyper-heuristics for educational timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 3-38, April.
    19. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Sotelo-Figeroa, Marco A. & Burke, Edmund K., 2017. "A methodology for determining an effective subset of heuristics in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 260(3), pages 972-983.
    20. Fabio Caraffini & Giovanni Iacca, 2020. "The SOS Platform: Designing, Tuning and Statistically Benchmarking Optimisation Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:22:y:2014:i:3:p:567-589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.