IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v250y2016i1p77-90.html
   My bibliography  Save this article

An iterated multi-stage selection hyper-heuristic

Author

Listed:
  • Kheiri, Ahmed
  • Özcan, Ender

Abstract

There is a growing interest towards the design of reusable general purpose search methods that are applicable to different problems instead of tailored solutions to a single particular problem. Hyper-heuristics have emerged as such high level methods that explore the space formed by a set of heuristics (move operators) or heuristic components for solving computationally hard problems. A selection hyper-heuristic mixes and controls a predefined set of low level heuristics with the goal of improving an initially generated solution by choosing and applying an appropriate heuristic to a solution in hand and deciding whether to accept or reject the new solution at each step under an iterative framework. Designing an adaptive control mechanism for the heuristic selection and combining it with a suitable acceptance method is a major challenge, because both components can influence the overall performance of a selection hyper-heuristic. In this study, we describe a novel iterated multi-stage hyper-heuristic approach which cycles through two interacting hyper-heuristics and operates based on the principle that not all low level heuristics for a problem domain would be useful at any point of the search process. The empirical results on a hyper-heuristic benchmark indicate the success of the proposed selection hyper-heuristic across six problem domains beating the state-of-the-art approach.

Suggested Citation

  • Kheiri, Ahmed & Özcan, Ender, 2016. "An iterated multi-stage selection hyper-heuristic," European Journal of Operational Research, Elsevier, vol. 250(1), pages 77-90.
  • Handle: RePEc:eee:ejores:v:250:y:2016:i:1:p:77-90
    DOI: 10.1016/j.ejor.2015.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715008255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Swan, Jerry & Carpio, Martin & Puga, Hector & Burke, Edmund K., 2014. "Effective learning hyper-heuristics for the course timetabling problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 77-86.
    2. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    3. Helena R. Lourenço & Olivier C. Martin & Thomas Stützle, 2010. "Iterated Local Search: Framework and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 363-397, Springer.
    4. Edmund K. Burke & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & John R. Woodward, 2010. "A Classification of Hyper-heuristic Approaches," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 449-468, Springer.
    5. García-Villoria, Alberto & Salhi, Said & Corominas, Albert & Pastor, Rafael, 2011. "Hyper-heuristic approaches for the response time variability problem," European Journal of Operational Research, Elsevier, vol. 211(1), pages 160-169, May.
    6. Pillay, N. & Banzhaf, W., 2009. "A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 482-491, September.
    7. Abdul Rahman, Syariza & Bargiela, Andrzej & Burke, Edmund K. & Özcan, Ender & McCollum, Barry & McMullan, Paul, 2014. "Adaptive linear combination of heuristic orderings in constructing examination timetables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 287-297.
    8. Burke, Edmund K. & McCollum, Barry & Meisels, Amnon & Petrovic, Sanja & Qu, Rong, 2007. "A graph-based hyper-heuristic for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 177-192, January.
    9. Edmund Burke & Graham Kendall & Mustafa Mısır & Ender Özcan, 2012. "Monte Carlo hyper-heuristics for examination timetabling," Annals of Operations Research, Springer, vol. 196(1), pages 73-90, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    2. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    3. Ahmed Kheiri, 2020. "Heuristic Sequence Selection for Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 302-312, March.
    4. Swan, Jerry & Adriaensen, Steven & Brownlee, Alexander E.I. & Hammond, Kevin & Johnson, Colin G. & Kheiri, Ahmed & Krawiec, Faustyna & Merelo, J.J. & Minku, Leandro L. & Özcan, Ender & Pappa, Gisele L, 2022. "Metaheuristics “In the Large”," European Journal of Operational Research, Elsevier, vol. 297(2), pages 393-406.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    2. Nelishia Pillay, 2016. "A review of hyper-heuristics for educational timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 3-38, April.
    3. Zhang, Yuchang & Bai, Ruibin & Qu, Rong & Tu, Chaofan & Jin, Jiahuan, 2022. "A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties," European Journal of Operational Research, Elsevier, vol. 300(2), pages 418-427.
    4. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    5. Mohammed Al-Betar & Ahamad Khader & Iyad Doush, 2014. "Memetic techniques for examination timetabling," Annals of Operations Research, Springer, vol. 218(1), pages 23-50, July.
    6. Franck Butelle & Laurent Alfandari & Camille Coti & Lucian Finta & Lucas Létocart & Gérard Plateau & Frédéric Roupin & Antoine Rozenknop & Roberto Wolfler Calvo, 2016. "Fast machine reassignment," Annals of Operations Research, Springer, vol. 242(1), pages 133-160, July.
    7. Lagos, Felipe & Pereira, Jordi, 2024. "Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 70-91.
    8. Lale Özbakır & Gökhan Seçme, 2022. "A hyper-heuristic approach for stochastic parallel assembly line balancing problems with equipment costs," Operational Research, Springer, vol. 22(1), pages 577-614, March.
    9. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Swan, Jerry & Carpio, Martin & Puga, Hector & Burke, Edmund K., 2014. "Effective learning hyper-heuristics for the course timetabling problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 77-86.
    10. Aleksandra Swiercz & Edmund Burke & Mateusz Cichenski & Grzegorz Pawlak & Sanja Petrovic & Tomasz Zurkowski & Jacek Blazewicz, 2014. "Unified encoding for hyper-heuristics with application to bioinformatics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 567-589, September.
    11. Yanwei Zhao & Longlong Leng & Chunmiao Zhang, 2021. "A novel framework of hyper-heuristic approach and its application in location-routing problem with simultaneous pickup and delivery," Operational Research, Springer, vol. 21(2), pages 1299-1332, June.
    12. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Sotelo-Figeroa, Marco A. & Burke, Edmund K., 2017. "A methodology for determining an effective subset of heuristics in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 260(3), pages 972-983.
    13. Chen, Yujie & Cowling, Peter & Polack, Fiona & Remde, Stephen & Mourdjis, Philip, 2017. "Dynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage system," European Journal of Operational Research, Elsevier, vol. 257(2), pages 494-510.
    14. Aleksandra Swiercz & Wojciech Frohmberg & Michal Kierzynka & Pawel Wojciechowski & Piotr Zurkowski & Jan Badura & Artur Laskowski & Marta Kasprzak & Jacek Blazewicz, 2018. "GRASShopPER—An algorithm for de novo assembly based on GPU alignments," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    15. Zeren, Bahadır & Özcan, Ender & Deveci, Muhammet, 2024. "An adaptive greedy heuristic for large scale airline crew pairing problems," Journal of Air Transport Management, Elsevier, vol. 114(C).
    16. Nelishia Pillay & Ender Özcan, 2019. "Automated generation of constructive ordering heuristics for educational timetabling," Annals of Operations Research, Springer, vol. 275(1), pages 181-208, April.
    17. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    18. T. Godwin, 2022. "Obtaining quality business school examination timetable under heterogeneous elective selections through surrogacy," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1055-1093, September.
    19. Fabio Caraffini & Giovanni Iacca, 2020. "The SOS Platform: Designing, Tuning and Statistically Benchmarking Optimisation Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-31, May.
    20. W. B. Yates & E. C. Keedwell, 2019. "An analysis of heuristic subsequences for offline hyper-heuristic learning," Journal of Heuristics, Springer, vol. 25(3), pages 399-430, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:250:y:2016:i:1:p:77-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.