IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1596-d214342.html
   My bibliography  Save this article

A Novel Hyper-Heuristic for the Biobjective Regional Low-Carbon Location-Routing Problem with Multiple Constraints

Author

Listed:
  • Longlong Leng

    (Key Laboratory of Special Equipment Manufacturing and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China)

  • Yanwei Zhao

    (Key Laboratory of Special Equipment Manufacturing and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China)

  • Zheng Wang

    (College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)

  • Jingling Zhang

    (Key Laboratory of Special Equipment Manufacturing and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China)

  • Wanliang Wang

    (College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)

  • Chunmiao Zhang

    (Key Laboratory of Special Equipment Manufacturing and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China)

Abstract

With the aim of reducing cost, carbon emissions, and service periods and improving clients’ satisfaction with the logistics network, this paper investigates the optimization of a variant of the location-routing problem (LRP), namely the regional low-carbon LRP (RLCLRP), considering simultaneous pickup and delivery, hard time windows, and a heterogeneous fleet. In order to solve this problem, we construct a biobjective model for the RLCLRP with minimum total cost consisting of depot, vehicle rental, fuel consumption, carbon emission costs, and vehicle waiting time. This paper further proposes a novel hyper-heuristic (HH) method to tackle the biobjective model. The presented method applies a quantum-based approach as a high-level selection strategy and the great deluge, late acceptance, and environmental selection as the acceptance criteria. We examine the superior efficiency of the proposed approach and model by conducting numerical experiments using different instances. Additionally, several managerial insights are provided for logistics enterprises to plan and design a distribution network by extensively analyzing the effects of various domain parameters such as depot cost and location, client distribution, and fleet composition on key performance indicators including fuel consumption, carbon emissions, logistics costs, and travel distance and time.

Suggested Citation

  • Longlong Leng & Yanwei Zhao & Zheng Wang & Jingling Zhang & Wanliang Wang & Chunmiao Zhang, 2019. "A Novel Hyper-Heuristic for the Biobjective Regional Low-Carbon Location-Routing Problem with Multiple Constraints," Sustainability, MDPI, vol. 11(6), pages 1-31, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1596-:d:214342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edmund K. Burke & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & John R. Woodward, 2010. "A Classification of Hyper-heuristic Approaches," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 449-468, Springer.
    2. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2011. "A branch and cut algorithm for the location-routing problem with simultaneous pickup and delivery," European Journal of Operational Research, Elsevier, vol. 211(2), pages 318-332, June.
    3. Li, Wenwen & Özcan, Ender & John, Robert, 2017. "Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation," Renewable Energy, Elsevier, vol. 105(C), pages 473-482.
    4. Masoud Rabbani & Mohsen Davoudkhani & Hamed Farrokhi-Asl, 2017. "A New Multi-Objective Green Location Routing Problem with Heterogonous Fleet of Vehicles and Fuel Constraint," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 8(3), pages 99-119, July.
    5. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    6. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    7. Jinhuan Tang & Shoufeng Ji & Liwen Jiang, 2016. "The Design of a Sustainable Location-Routing-Inventory Model Considering Consumer Environmental Behavior," Sustainability, MDPI, vol. 8(3), pages 1-20, February.
    8. Validi, Sahar & Bhattacharya, Arijit & Byrne, P.J., 2014. "A case analysis of a sustainable food supply chain distribution system—A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 152(C), pages 71-87.
    9. Wan-Yu Liu & Chun-Cheng Lin & Ching-Ren Chiu & You-Song Tsao & Qunwei Wang, 2014. "Minimizing the Carbon Footprint for the Time-Dependent Heterogeneous-Fleet Vehicle Routing Problem with Alternative Paths," Sustainability, MDPI, vol. 6(7), pages 1-27, July.
    10. Olacir R. Castro & Gian Mauricio Fritsche & Aurora Pozo, 2018. "Evaluating selection methods on hyper-heuristic multi-objective particle swarm optimization," Journal of Heuristics, Springer, vol. 24(4), pages 581-616, August.
    11. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    12. Fatemeh Faraji & Behrouz Afshar-Nadjafi, 2018. "A bi-objective green location-routing model and solving problem using a hybrid metaheuristic algorithm," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 30(3), pages 366-385.
    13. Zahra Ebrahimi Qazvini & Mohsen Sadegh Amalnick & Hassan Mina, 2016. "A green multi-depot location routing model with split-delivery and time window," International Journal of Management Concepts and Philosophy, Inderscience Enterprises Ltd, vol. 9(4), pages 271-282.
    14. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    15. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    16. Taesung Hwang & Yanfeng Ouyang, 2015. "Urban Freight Truck Routing under Stochastic Congestion and Emission Considerations," Sustainability, MDPI, vol. 7(6), pages 1-16, May.
    17. Lin Zhou & Xu Wang & Lin Ni & Yun Lin, 2016. "Location-Routing Problem with Simultaneous Home Delivery and Customer’s Pickup for City Distribution of Online Shopping Purchases," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
    18. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Wang & Zhongxiu Peng & Xijun Xu, 2021. "A Bi-Level Programming Approach to the Location-Routing Problem with Cargo Splitting under Low-Carbon Policies," Mathematics, MDPI, vol. 9(18), pages 1-34, September.
    2. Hongli Zhu & Congcong Liu & Yongming Song, 2022. "A Bi-Level Programming Model for the Integrated Problem of Low Carbon Supplier Selection and Transportation," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    3. Feiyue Qiu & Guodao Zhang & Ping-Kuo Chen & Cheng Wang & Yi Pan & Xin Sheng & Dewei Kong, 2020. "A Novel Multi-Objective Model for the Cold Chain Logistics Considering Multiple Effects," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
    4. Yong Wang & Yingying Yuan & Xiangyang Guan & Haizhong Wang & Yong Liu & Maozeng Xu, 2019. "Collaborative Mechanism for Pickup and Delivery Problems with Heterogeneous Vehicles under Time Windows," Sustainability, MDPI, vol. 11(12), pages 1-30, June.
    5. Longlong Leng & Jingling Zhang & Chunmiao Zhang & Yanwei Zhao & Wanliang Wang & Gongfa Li, 2020. "A novel bi-objective model of cold chain logistics considering location-routing decision and environmental effects," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longlong Leng & Yanwei Zhao & Jingling Zhang & Chunmiao Zhang, 2019. "An Effective Approach for the Multiobjective Regional Low-Carbon Location-Routing Problem," IJERPH, MDPI, vol. 16(11), pages 1-28, June.
    2. Feiyue Qiu & Guodao Zhang & Ping-Kuo Chen & Cheng Wang & Yi Pan & Xin Sheng & Dewei Kong, 2020. "A Novel Multi-Objective Model for the Cold Chain Logistics Considering Multiple Effects," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
    3. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    4. Yu, Yang & Wang, Sihan & Wang, Junwei & Huang, Min, 2019. "A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 511-527.
    5. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    6. Behnke, Martin & Kirschstein, Thomas & Bierwirth, Christian, 2021. "A column generation approach for an emission-oriented vehicle routing problem on a multigraph," European Journal of Operational Research, Elsevier, vol. 288(3), pages 794-809.
    7. Ehmke, Jan Fabian & Campbell, Ann Melissa & Thomas, Barrett W., 2016. "Vehicle routing to minimize time-dependent emissions in urban areas," European Journal of Operational Research, Elsevier, vol. 251(2), pages 478-494.
    8. Franceschetti, Anna & Demir, Emrah & Honhon, Dorothée & Van Woensel, Tom & Laporte, Gilbert & Stobbe, Mark, 2017. "A metaheuristic for the time-dependent pollution-routing problem," European Journal of Operational Research, Elsevier, vol. 259(3), pages 972-991.
    9. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    10. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    11. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    12. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    13. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    14. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    15. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    16. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    17. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.
    18. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    19. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    20. Kramer, Raphael & Subramanian, Anand & Vidal, Thibaut & Cabral, Lucídio dos Anjos F., 2015. "A matheuristic approach for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 243(2), pages 523-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1596-:d:214342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.