IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i1p77-86.html
   My bibliography  Save this article

Effective learning hyper-heuristics for the course timetabling problem

Author

Listed:
  • Soria-Alcaraz, Jorge A.
  • Ochoa, Gabriela
  • Swan, Jerry
  • Carpio, Martin
  • Puga, Hector
  • Burke, Edmund K.

Abstract

Course timetabling is an important and recurring administrative activity in most educational institutions. This article combines a general modeling methodology with effective learning hyper-heuristics to solve this problem. The proposed hyper-heuristics are based on an iterated local search procedure that autonomously combines a set of move operators. Two types of learning for operator selection are contrasted: a static (offline) approach, with a clear distinction between training and execution phases; and a dynamic approach that learns on the fly. The resulting algorithms are tested over the set of real-world instances collected by the first and second International Timetabling competitions. The dynamic scheme statistically outperforms the static counterpart, and produces competitive results when compared to the state-of-the-art, even producing a new best-known solution. Importantly, our study illustrates that algorithms with increased autonomy and generality can outperform human designed problem-specific algorithms.

Suggested Citation

  • Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Swan, Jerry & Carpio, Martin & Puga, Hector & Burke, Edmund K., 2014. "Effective learning hyper-heuristics for the course timetabling problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 77-86.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:1:p:77-86
    DOI: 10.1016/j.ejor.2014.03.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714002859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.03.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    2. Barry McCollum & Andrea Schaerf & Ben Paechter & Paul McMullan & Rhyd Lewis & Andrew J. Parkes & Luca Di Gaspero & Rong Qu & Edmund K. Burke, 2010. "Setting the Research Agenda in Automated Timetabling: The Second International Timetabling Competition," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 120-130, February.
    3. Burke, Edmund K. & Curtois, Tim, 2014. "New approaches to nurse rostering benchmark instances," European Journal of Operational Research, Elsevier, vol. 237(1), pages 71-81.
    4. Qu, Rong & Burke, Edmund K. & McCollum, Barry, 2009. "Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems," European Journal of Operational Research, Elsevier, vol. 198(2), pages 392-404, October.
    5. Rhyd Lewis, 2012. "A time-dependent metaheuristic algorithm for post enrolment-based course timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 273-289, April.
    6. Michel Gendreau & Jean-Yves Potvin (ed.), 2010. "Handbook of Metaheuristics," International Series in Operations Research and Management Science, Springer, number 978-1-4419-1665-5, April.
    7. Abdul Rahman, Syariza & Bargiela, Andrzej & Burke, Edmund K. & Özcan, Ender & McCollum, Barry & McMullan, Paul, 2014. "Adaptive linear combination of heuristic orderings in constructing examination timetables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 287-297.
    8. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    9. Burke, Edmund K. & McCollum, Barry & Meisels, Amnon & Petrovic, Sanja & Qu, Rong, 2007. "A graph-based hyper-heuristic for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 177-192, January.
    10. Michael W. Carter, 1986. "OR Practice—A Survey of Practical Applications of Examination Timetabling Algorithms," Operations Research, INFORMS, vol. 34(2), pages 193-202, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Sotelo-Figeroa, Marco A. & Burke, Edmund K., 2017. "A methodology for determining an effective subset of heuristics in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 260(3), pages 972-983.
    2. Felipe Rosa-Rivera & Jose I. Nunez-Varela & Cesar A. Puente-Montejano & Sandra E. Nava-Muñoz, 2021. "Measuring the complexity of university timetabling instances," Journal of Scheduling, Springer, vol. 24(1), pages 103-121, February.
    3. W. B. Yates & E. C. Keedwell, 2019. "An analysis of heuristic subsequences for offline hyper-heuristic learning," Journal of Heuristics, Springer, vol. 25(3), pages 399-430, June.
    4. Zhang, Yuchang & Bai, Ruibin & Qu, Rong & Tu, Chaofan & Jin, Jiahuan, 2022. "A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties," European Journal of Operational Research, Elsevier, vol. 300(2), pages 418-427.
    5. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    6. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    7. Nelishia Pillay, 2016. "A review of hyper-heuristics for educational timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 3-38, April.
    8. Kheiri, Ahmed & Özcan, Ender, 2016. "An iterated multi-stage selection hyper-heuristic," European Journal of Operational Research, Elsevier, vol. 250(1), pages 77-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    2. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Sotelo-Figeroa, Marco A. & Burke, Edmund K., 2017. "A methodology for determining an effective subset of heuristics in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 260(3), pages 972-983.
    3. Edmund K. Burke & Yuri Bykov, 2016. "An Adaptive Flex-Deluge Approach to University Exam Timetabling," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 781-794, November.
    4. Turabieh, Hamza & Abdullah, Salwani, 2011. "An integrated hybrid approach to the examination timetabling problem," Omega, Elsevier, vol. 39(6), pages 598-607, December.
    5. Burke, E.K. & Eckersley, A.J. & McCollum, B. & Petrovic, S. & Qu, R., 2010. "Hybrid variable neighbourhood approaches to university exam timetabling," European Journal of Operational Research, Elsevier, vol. 206(1), pages 46-53, October.
    6. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    7. Edmund Burke & Graham Kendall & Mustafa Mısır & Ender Özcan, 2012. "Monte Carlo hyper-heuristics for examination timetabling," Annals of Operations Research, Springer, vol. 196(1), pages 73-90, July.
    8. Nelishia Pillay, 2016. "A review of hyper-heuristics for educational timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 3-38, April.
    9. Mohammed Al-Betar & Ahamad Khader & Iyad Doush, 2014. "Memetic techniques for examination timetabling," Annals of Operations Research, Springer, vol. 218(1), pages 23-50, July.
    10. Kheiri, Ahmed & Özcan, Ender, 2016. "An iterated multi-stage selection hyper-heuristic," European Journal of Operational Research, Elsevier, vol. 250(1), pages 77-90.
    11. Christine Mumford, 2010. "A multiobjective framework for heavily constrained examination timetabling problems," Annals of Operations Research, Springer, vol. 180(1), pages 3-31, November.
    12. Kahar, M.N.M. & Kendall, G., 2010. "The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution," European Journal of Operational Research, Elsevier, vol. 207(2), pages 557-565, December.
    13. Abdul Rahman, Syariza & Bargiela, Andrzej & Burke, Edmund K. & Özcan, Ender & McCollum, Barry & McMullan, Paul, 2014. "Adaptive linear combination of heuristic orderings in constructing examination timetables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 287-297.
    14. Sabar, Nasser R. & Ayob, Masri & Kendall, Graham & Qu, Rong, 2012. "A honey-bee mating optimization algorithm for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 533-543.
    15. Swan, Jerry & Adriaensen, Steven & Brownlee, Alexander E.I. & Hammond, Kevin & Johnson, Colin G. & Kheiri, Ahmed & Krawiec, Faustyna & Merelo, J.J. & Minku, Leandro L. & Özcan, Ender & Pappa, Gisele L, 2022. "Metaheuristics “In the Large”," European Journal of Operational Research, Elsevier, vol. 297(2), pages 393-406.
    16. Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.
    17. Edmund Burke & Rong Qu & Amr Soghier, 2014. "Adaptive selection of heuristics for improving exam timetables," Annals of Operations Research, Springer, vol. 218(1), pages 129-145, July.
    18. Martin Geiger, 2012. "Applying the threshold accepting metaheuristic to curriculum based course timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 189-202, April.
    19. Yuri Bykov & Sanja Petrovic, 2016. "A Step Counting Hill Climbing Algorithm applied to University Examination Timetabling," Journal of Scheduling, Springer, vol. 19(4), pages 479-492, August.
    20. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:1:p:77-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.