IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i1d10.1007_s12351-020-00561-x.html
   My bibliography  Save this article

A hyper-heuristic approach for stochastic parallel assembly line balancing problems with equipment costs

Author

Listed:
  • Lale Özbakır

    (Erciyes University)

  • Gökhan Seçme

    (Nevşehir Hacı Bektaş Veli University)

Abstract

This study addresses the stochastic parallel assembly line balancing problem with equipment costs and presents a hyper-heuristic approach based on simulated annealing for solving it. A cost-based objective function is employed to represent the incompletion, equipment, and station installation costs. The hyper-heuristic approach is utilized to search on sequencing heuristics search space, rather than a problem-specific solution space. This study focuses on the consideration of equipment costs while balancing a stochastic parallel assembly line. The performance of the solution approach is also tested on the single-model stochastic assembly line balancing problems and stochastic parallel assembly line balancing problems due to the generalizability of hyper-heuristics. The results of the benchmark problems show that in most cases the proposed algorithm provides better solutions than the best-known solutions in literature. An extensive computational study performed to determine the parameter levels derived from the problem and the solution method. The effect of the equipment costs for stochastic parallel assembly lines is also analyzed in detail.

Suggested Citation

  • Lale Özbakır & Gökhan Seçme, 2022. "A hyper-heuristic approach for stochastic parallel assembly line balancing problems with equipment costs," Operational Research, Springer, vol. 22(1), pages 577-614, March.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:1:d:10.1007_s12351-020-00561-x
    DOI: 10.1007/s12351-020-00561-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00561-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00561-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amaia Lusa, 2008. "A survey of the literature on the multiple or parallel assembly line balancing problem," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(1), pages 50-72.
    2. Jacek Blazewicz & Edmund Burke & Graham Kendall & Wojciech Mruczkiewicz & Ceyda Oguz & Aleksandra Swiercz, 2013. "A hyper-heuristic approach to sequencing by hybridization of DNA sequences," Annals of Operations Research, Springer, vol. 207(1), pages 27-41, August.
    3. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    4. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    5. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    6. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    7. Marcus Ritt & Alysson M. Costa & Cristóbal Miralles, 2016. "The assembly line worker assignment and balancing problem with stochastic worker availability," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 907-922, February.
    8. Edmund K. Burke & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & John R. Woodward, 2010. "A Classification of Hyper-heuristic Approaches," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 449-468, Springer.
    9. Amen, Matthias, 2006. "Cost-oriented assembly line balancing: Model formulations, solution difficulty, upper and lower bounds," European Journal of Operational Research, Elsevier, vol. 168(3), pages 747-770, February.
    10. Kucukkoc, Ibrahim & Zhang, David Z., 2014. "Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines," International Journal of Production Economics, Elsevier, vol. 158(C), pages 314-333.
    11. Sarin, Subhash C. & Erel, Erdal & Dar-El, Ezey M., 1999. "A methodology for solving single-model, stochastic assembly line balancing problem," Omega, Elsevier, vol. 27(5), pages 525-535, October.
    12. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    13. Gokcen, Hadi & Agpak, Kursad & Benzer, Recep, 2006. "Balancing of parallel assembly lines," International Journal of Production Economics, Elsevier, vol. 103(2), pages 600-609, October.
    14. Burke, Edmund K. & McCollum, Barry & Meisels, Amnon & Petrovic, Sanja & Qu, Rong, 2007. "A graph-based hyper-heuristic for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 177-192, January.
    15. Scholl, Armin & Boysen, Nils, 2009. "Designing parallel assembly lines with split workplaces: Model and optimization procedure," International Journal of Production Economics, Elsevier, vol. 119(1), pages 90-100, May.
    16. Fred N. Silverman & John C. Carter, 1986. "A Cost-Based Methodology for Stochastic Line Balancing with Intermittent Line Stoppages," Management Science, INFORMS, vol. 32(4), pages 455-463, April.
    17. Lan, Chun-Hsiung, 2007. "The design of multiple production lines under deadline constraint," International Journal of Production Economics, Elsevier, vol. 106(1), pages 191-203, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    2. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    3. Tiacci, Lorenzo, 2015. "Simultaneous balancing and buffer allocation decisions for the design of mixed-model assembly lines with parallel workstations and stochastic task times," International Journal of Production Economics, Elsevier, vol. 162(C), pages 201-215.
    4. Koltai, Tamás & Dimény, Imre & Gallina, Viola & Gaal, Alexander & Sepe, Chiara, 2021. "An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models," International Journal of Production Economics, Elsevier, vol. 242(C).
    5. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    6. Araújo, Felipe F.B. & Costa, Alysson M. & Miralles, Cristóbal, 2012. "Two extensions for the ALWABP: Parallel stations and collaborative approach," International Journal of Production Economics, Elsevier, vol. 140(1), pages 483-495.
    7. Marcus Ritt & Alysson M. Costa & Cristóbal Miralles, 2016. "The assembly line worker assignment and balancing problem with stochastic worker availability," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 907-922, February.
    8. Scholl, Armin & Boysen, Nils, 2009. "Designing parallel assembly lines with split workplaces: Model and optimization procedure," International Journal of Production Economics, Elsevier, vol. 119(1), pages 90-100, May.
    9. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    10. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    11. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    12. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    13. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    14. John F. Wellington & Stephen A. Lewis, 2018. "Interactive Excel-Based Procedure for Line Balancing," INFORMS Transactions on Education, INFORMS, vol. 19(1), pages 23-35, September.
    15. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    16. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    17. Klindworth, Hanne & Otto, Christian & Scholl, Armin, 2012. "On a learning precedence graph concept for the automotive industry," European Journal of Operational Research, Elsevier, vol. 217(2), pages 259-269.
    18. Otto, Alena & Li, Xiyu, 2020. "Product sequencing in multiple-piece-flow assembly lines," Omega, Elsevier, vol. 91(C).
    19. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.
    20. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:1:d:10.1007_s12351-020-00561-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.