IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v242y2016i1d10.1007_s10479-015-2082-3.html
   My bibliography  Save this article

Fast machine reassignment

Author

Listed:
  • Franck Butelle

    (Université Paris 13, Sorbonne Paris Cité)

  • Laurent Alfandari

    (Université Paris 13, Sorbonne Paris Cité
    ESSEC Business School)

  • Camille Coti

    (Université Paris 13, Sorbonne Paris Cité)

  • Lucian Finta

    (Université Paris 13, Sorbonne Paris Cité)

  • Lucas Létocart

    (Université Paris 13, Sorbonne Paris Cité)

  • Gérard Plateau

    (Université Paris 13, Sorbonne Paris Cité)

  • Frédéric Roupin

    (Université Paris 13, Sorbonne Paris Cité)

  • Antoine Rozenknop

    (Université Paris 13, Sorbonne Paris Cité)

  • Roberto Wolfler Calvo

    (Université Paris 13, Sorbonne Paris Cité)

Abstract

This paper proposes a new method for solving the Machine Reassignment Problem in a very short computational time. The problem has been proposed by Google as subject of the Challenge ROADEF/EURO 2012. The Machine Reassignment Problem consists in looking for a reassignment of processes to machines in order to minimize a complex objective function, subject to a rich set of constraints including multidimensional resource, conflict and dependency constraints. In this study, a cooperative search approach is presented for machine reassignment. This approach uses two components: Adaptive Variable Neighbourhood Search and Simulated Annealing based Hyper-Heuristic, running in parallel on two threads and exchanging solutions. Both algorithms employ a rich set of heuristics and a learning mechanism to select the best neighborhood/move type during the search process. The cooperation mechanism acts as a multiple restart which gets triggered whenever a new better solution is achieved by a thread and then shared with the other thread. Computational results on the Challenge instances as well as instances of a Generalized Assignment-like problem are given to show the relevance of the chosen methods and the high benefits of cooperation.

Suggested Citation

  • Franck Butelle & Laurent Alfandari & Camille Coti & Lucian Finta & Lucas Létocart & Gérard Plateau & Frédéric Roupin & Antoine Rozenknop & Roberto Wolfler Calvo, 2016. "Fast machine reassignment," Annals of Operations Research, Springer, vol. 242(1), pages 133-160, July.
  • Handle: RePEc:spr:annopr:v:242:y:2016:i:1:d:10.1007_s10479-015-2082-3
    DOI: 10.1007/s10479-015-2082-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-2082-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-2082-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yagiura, Mutsunori & Ibaraki, Toshihide & Glover, Fred, 2006. "A path relinking approach with ejection chains for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 548-569, March.
    2. Dowsland, Kathryn A. & Soubeiga, Eric & Burke, Edmund, 2007. "A simulated annealing based hyperheuristic for determining shipper sizes for storage and transportation," European Journal of Operational Research, Elsevier, vol. 179(3), pages 759-774, June.
    3. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    4. Bezalel Gavish & Hasan Pirkul, 1991. "Algorithms for the Multi-Resource Generalized Assignment Problem," Management Science, INFORMS, vol. 37(6), pages 695-713, June.
    5. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    6. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    7. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    8. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    9. James, Tabitha & Rego, Cesar & Glover, Fred, 2009. "A cooperative parallel tabu search algorithm for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 195(3), pages 810-826, June.
    10. Edmund Burke & Graham Kendall & Mustafa Mısır & Ender Özcan, 2012. "Monte Carlo hyper-heuristics for examination timetabling," Annals of Operations Research, Springer, vol. 196(1), pages 73-90, July.
    11. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    12. Puchinger, Jakob & Raidl, Gunther R., 2007. "Models and algorithms for three-stage two-dimensional bin packing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1304-1327, December.
    13. Edmund K. Burke & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & John R. Woodward, 2010. "A Classification of Hyper-heuristic Approaches," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 449-468, Springer.
    14. Cattrysse, Dirk G. & Van Wassenhove, Luk N., 1992. "A survey of algorithms for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 60(3), pages 260-272, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takfarinas Saber & Xavier Gandibleux & Michael O’Neill & Liam Murphy & Anthony Ventresque, 2020. "A comparative study of multi-objective machine reassignment algorithms for data centres," Journal of Heuristics, Springer, vol. 26(1), pages 119-150, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Gaudioso & L. Moccia & M. F. Monaco, 2010. "Repulsive Assignment Problem," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 255-273, February.
    2. Raidl, Günther R., 2015. "Decomposition based hybrid metaheuristics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 66-76.
    3. Ahmed Ghoniem & Tulay Flamand & Mohamed Haouari, 2016. "Optimization-Based Very Large-Scale Neighborhood Search for Generalized Assignment Problems with Location/Allocation Considerations," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 575-588, August.
    4. Matusiak, M. & de Koster, M.B.M. & Saarinen, J., 2015. "Data-driven warehouse optimization," ERIM Report Series Research in Management ERS-2015-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Kheiri, Ahmed & Özcan, Ender, 2016. "An iterated multi-stage selection hyper-heuristic," European Journal of Operational Research, Elsevier, vol. 250(1), pages 77-90.
    6. Matusiak, Marek & de Koster, René & Saarinen, Jari, 2017. "Utilizing individual picker skills to improve order batching in a warehouse," European Journal of Operational Research, Elsevier, vol. 263(3), pages 888-899.
    7. Sujeet Kumar Singh & Deepika Rani, 2019. "A branching algorithm to solve binary problem in uncertain environment: an application in machine allocation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 1007-1023, September.
    8. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    9. Jeet, V. & Kutanoglu, E., 2007. "Lagrangian relaxation guided problem space search heuristics for generalized assignment problems," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1039-1056, November.
    10. Yanwei Zhao & Longlong Leng & Chunmiao Zhang, 2021. "A novel framework of hyper-heuristic approach and its application in location-routing problem with simultaneous pickup and delivery," Operational Research, Springer, vol. 21(2), pages 1299-1332, June.
    11. M Büther, 2010. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1582-1595, November.
    12. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    13. Büther, Marcel, 2007. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 632, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Aleksandra Swiercz & Wojciech Frohmberg & Michal Kierzynka & Pawel Wojciechowski & Piotr Zurkowski & Jan Badura & Artur Laskowski & Marta Kasprzak & Jacek Blazewicz, 2018. "GRASShopPER—An algorithm for de novo assembly based on GPU alignments," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    15. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    16. Büther, Marcel, 2008. "Beam search for the elastic generalized assignment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 634, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Mehdi Mrad & Anis Gharbi & Mohamed Haouari & Mohamed Kharbeche, 2016. "An optimization-based heuristic for the machine reassignment problem," Annals of Operations Research, Springer, vol. 242(1), pages 115-132, July.
    18. Christian Billing & Florian Jaehn & Thomas Wensing, 2020. "Fair task allocation problem," Annals of Operations Research, Springer, vol. 284(1), pages 131-146, January.
    19. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    20. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:242:y:2016:i:1:d:10.1007_s10479-015-2082-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.