IDEAS home Printed from https://ideas.repec.org/a/spr/binfse/v62y2020i4d10.1007_s12599-020-00650-3.html
   My bibliography  Save this article

Fair AI

Author

Listed:
  • Stefan Feuerriegel

    (ETH Zurich)

  • Mateusz Dolata

    (University of Zurich)

  • Gerhard Schwabe

    (University of Zurich)

Abstract

No abstract is available for this item.

Suggested Citation

  • Stefan Feuerriegel & Mateusz Dolata & Gerhard Schwabe, 2020. "Fair AI," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(4), pages 379-384, August.
  • Handle: RePEc:spr:binfse:v:62:y:2020:i:4:d:10.1007_s12599-020-00650-3
    DOI: 10.1007/s12599-020-00650-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12599-020-00650-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12599-020-00650-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Zou & Londa Schiebinger, 2018. "AI can be sexist and racist — it’s time to make it fair," Nature, Nature, vol. 559(7714), pages 324-326, July.
    2. repec:nas:journl:v:115:y:2018:p:e3635-e3644 is not listed on IDEAS
    3. Katharina Hamann & Felix Warneken & Julia R. Greenberg & Michael Tomasello, 2011. "Collaboration encourages equal sharing in children but not in chimpanzees," Nature, Nature, vol. 476(7360), pages 328-331, August.
    4. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    5. Wil M. P. Aalst & Martin Bichler & Armin Heinzl, 2017. "Responsible Data Science," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(5), pages 311-313, October.
    6. Mehmet Eren Ahsen & Mehmet Ulvi Saygi Ayvaci & Srinivasan Raghunathan, 2019. "When Algorithmic Predictions Use Human-Generated Data: A Bias-Aware Classification Algorithm for Breast Cancer Diagnosis," Service Science, INFORMS, vol. 30(1), pages 97-116, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    2. Feras A. Batarseh & Munisamy Gopinath & Anderson Monken, 2020. "Artificial Intelligence Methods for Evaluating Global Trade Flows," International Finance Discussion Papers 1296, Board of Governors of the Federal Reserve System (U.S.).
    3. Patricia Kanngiesser & Felix Warneken, 2012. "Young Children Consider Merit when Sharing Resources with Others," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-5, August.
    4. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    5. repec:iim:iimawp:14638 is not listed on IDEAS
    6. Michael A. Flynn & Pietra Check & Andrea L. Steege & Jacqueline M. Sivén & Laura N. Syron, 2021. "Health Equity and a Paradigm Shift in Occupational Safety and Health," IJERPH, MDPI, vol. 19(1), pages 1-13, December.
    7. Bhattacharya, Sourabh & Govindan, Kannan & Ghosh Dastidar, Surajit & Sharma, Preeti, 2024. "Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    8. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    9. Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
    10. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    11. Hamsa Bastani, 2021. "Predicting with Proxies: Transfer Learning in High Dimension," Management Science, INFORMS, vol. 67(5), pages 2964-2984, May.
    12. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    13. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    14. Mi, Yunlong & Wang, Zongrun & Quan, Pei & Shi, Yong, 2024. "A semi-supervised concept-cognitive computing system for dynamic classification decision making with limited feedback information," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1123-1138.
    15. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    16. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
    17. Utteeyo Dasgupta & Chandan Kumar Jha & Sudipta Sarangi, 2021. "Persistent Patterns Of Behavior: Two Infectious Disease Outbreaks 350 Years Apart," Economic Inquiry, Western Economic Association International, vol. 59(2), pages 848-857, April.
    18. Ameling, Justus & Gust, Gunther, 2024. "Automated feeder routing for underground electricity distribution networks based on aerial images," European Journal of Operational Research, Elsevier, vol. 318(2), pages 629-641.
    19. Charlene H. Chu & Simon Donato-Woodger & Shehroz S. Khan & Rune Nyrup & Kathleen Leslie & Alexandra Lyn & Tianyu Shi & Andria Bianchi & Samira Abbasgholizadeh Rahimi & Amanda Grenier, 2023. "Age-related bias and artificial intelligence: a scoping review," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-17, December.
    20. Janssens, Bram & Schetgen, Lisa & Bogaert, Matthias & Meire, Matthijs & Van den Poel, Dirk, 2024. "360 Degrees rumor detection: When explanations got some explaining to do," European Journal of Operational Research, Elsevier, vol. 317(2), pages 366-381.
    21. Chien-Wei Chuang & Ariana Chang & Mingchih Chen & Maria John P. Selvamani & Ben-Chang Shia, 2022. "A Worldwide Bibliometric Analysis of Publications on Artificial Intelligence and Ethics in the Past Seven Decades," Sustainability, MDPI, vol. 14(18), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:62:y:2020:i:4:d:10.1007_s12599-020-00650-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.