IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i3p1123-1138.html
   My bibliography  Save this article

A semi-supervised concept-cognitive computing system for dynamic classification decision making with limited feedback information

Author

Listed:
  • Mi, Yunlong
  • Wang, Zongrun
  • Quan, Pei
  • Shi, Yong

Abstract

In dynamic environments, making classification decisions based on classical intelligent decision support systems is a challenge, as the classification performance of decision-making and the time-cost of learning need to be considered simultaneously. Moreover, many tasks of classification decisions lack label information because annotating data is time-consuming, labor-intensive and expensive process. This means that some standard intelligent decision support systems will perform inferior performance if they cannot dynamically make full use of the information behind abundant unlabeled data. Therefore, by incorporating knowledge representation and dynamic updating mechanisms into concept learning processes, we introduce a novel dynamic concept learning approach, namely semi-supervised concept-cognitive computing system (s2C3S), for making classification decisions by jointly utilizing some labeled data and abundant unlabeled data under dynamic environments. A theoretical analysis has shown that the proposed s2C3S can achieve significantly lower computational costs and higher classification accuracies than the existing incremental K Nearest Neighbor method (IKNN) and concept-cognitive computing system (C3S). The experimental results on various datasets further demonstrated that our system is effective for dynamic classification decision-making with limited labeled data under dynamic learning processes. Additionally, s2C3S can also be applied to computer-assisted intelligent diagnosis from the given medical images (such as chest X-ray images) dynamically and accurately.

Suggested Citation

  • Mi, Yunlong & Wang, Zongrun & Quan, Pei & Shi, Yong, 2024. "A semi-supervised concept-cognitive computing system for dynamic classification decision making with limited feedback information," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1123-1138.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:3:p:1123-1138
    DOI: 10.1016/j.ejor.2023.12.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723009839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.12.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maytal Saar-Tsechansky & Foster Provost, 2007. "Decision-Centric Active Learning of Binary-Outcome Models," Information Systems Research, INFORMS, vol. 18(1), pages 4-22, March.
    2. Mi, Yunlong & Quan, Pei & Shi, Yong & Wang, Zongrun, 2022. "Concept-cognitive computing system for dynamic classification," European Journal of Operational Research, Elsevier, vol. 301(1), pages 287-299.
    3. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 1999. "Rough approximation of a preference relation by dominance relations," European Journal of Operational Research, Elsevier, vol. 117(1), pages 63-83, August.
    4. Pawlak, Zdzislaw, 1997. "Rough set approach to knowledge-based decision support," European Journal of Operational Research, Elsevier, vol. 99(1), pages 48-57, May.
    5. Georg Meyer & Gediminas Adomavicius & Paul E. Johnson & Mohamed Elidrisi & William A. Rush & JoAnn M. Sperl-Hillen & Patrick J. O'Connor, 2014. "A Machine Learning Approach to Improving Dynamic Decision Making," Information Systems Research, INFORMS, vol. 25(2), pages 239-263, June.
    6. F. Javier Lerch & Donald E. Harter, 2001. "Cognitive Support for Real-Time Dynamic Decision Making," Information Systems Research, INFORMS, vol. 12(1), pages 63-82, March.
    7. Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
    8. Jiapeng Liu & Miłosz Kadziński & Xiuwu Liao & Xiaoxin Mao, 2021. "Data-Driven Preference Learning Methods for Value-Driven Multiple Criteria Sorting with Interacting Criteria," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 586-606, May.
    9. Jussupow, Ekaterina & Spohrer, Kai & Heinzl, Armin & Gawlitza, Joshua, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 137446, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Davila-Pena, Laura & García-Jurado, Ignacio & Casas-Méndez, Balbina, 2022. "Assessment of the influence of features on a classification problem: An application to COVID-19 patients," European Journal of Operational Research, Elsevier, vol. 299(2), pages 631-641.
    11. Shanshan Wang & Cheng Li & Rongpin Wang & Zaiyi Liu & Meiyun Wang & Hongna Tan & Yaping Wu & Xinfeng Liu & Hui Sun & Rui Yang & Xin Liu & Jie Chen & Huihui Zhou & Ismail Ayed & Hairong Zheng, 2021. "Annotation-efficient deep learning for automatic medical image segmentation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Jacob Feldman, 2000. "Minimization of Boolean complexity in human concept learning," Nature, Nature, vol. 407(6804), pages 630-633, October.
    13. Mi, Yunlong & Wang, Zongrun & Liu, Hui & Qu, Yi & Yu, Gaofeng & Shi, Yong, 2023. "Divide and conquer: A granular concept-cognitive computing system for dynamic classification decision making," European Journal of Operational Research, Elsevier, vol. 308(1), pages 255-273.
    14. Mehmet Eren Ahsen & Mehmet Ulvi Saygi Ayvaci & Srinivasan Raghunathan, 2019. "When Algorithmic Predictions Use Human-Generated Data: A Bias-Aware Classification Algorithm for Breast Cancer Diagnosis," Service Science, INFORMS, vol. 30(1), pages 97-116, March.
    15. Pierre Brice & Wei Jiang & Guohua Wan, 2011. "A Cluster-Based Context-Tree Model for Multivariate Data Streams with Applications to Anomaly Detection," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 364-376, August.
    16. Hu Tian & Xiaolong Zheng & Kang Zhao & Maggie Wenjing Liu & Daniel Dajun Zeng, 2022. "Inductive Representation Learning on Dynamic Stock Co-Movement Graphs for Stock Predictions," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1940-1957, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Bingmei & Liu, Jiaguo & Ye, Xiaoheng & Gong, Yu & Chen, Jihong, 2024. "Data-driven approach for port resilience evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mi, Yunlong & Wang, Zongrun & Liu, Hui & Qu, Yi & Yu, Gaofeng & Shi, Yong, 2023. "Divide and conquer: A granular concept-cognitive computing system for dynamic classification decision making," European Journal of Operational Research, Elsevier, vol. 308(1), pages 255-273.
    2. Kevin Bauer & Andrej Gill, 2024. "Mirror, Mirror on the Wall: Algorithmic Assessments, Transparency, and Self-Fulfilling Prophecies," Information Systems Research, INFORMS, vol. 35(1), pages 226-248, March.
    3. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    4. Chen, Li-Fei & Tsai, Chih-Tsung, 2016. "Data mining framework based on rough set theory to improve location selection decisions: A case study of a restaurant chain," Tourism Management, Elsevier, vol. 53(C), pages 197-206.
    5. Sarah Ben Amor & Fateh Belaid & Ramzi Benkraiem & Boumediene Ramdani & Khaled Guesmi, 2023. "Multi-criteria classification, sorting, and clustering: a bibliometric review and research agenda," Annals of Operations Research, Springer, vol. 325(2), pages 771-793, June.
    6. Kevin Bauer & Moritz von Zahn & Oliver Hinz, 2023. "Expl(AI)ned: The Impact of Explainable Artificial Intelligence on Users’ Information Processing," Information Systems Research, INFORMS, vol. 34(4), pages 1582-1602, December.
    7. Zaras, Kazimierz, 2001. "Rough approximation of a preference relation by a multi-attribute stochastic dominance for determinist and stochastic evaluation problems," European Journal of Operational Research, Elsevier, vol. 130(2), pages 305-314, April.
    8. Sullivan, Yulia & Fosso Wamba, Samuel, 2024. "Artificial intelligence and adaptive response to market changes: A strategy to enhance firm performance and innovation," Journal of Business Research, Elsevier, vol. 174(C).
    9. Singh, Nidhi & Jain, Monika & Kamal, Muhammad Mustafa & Bodhi, Rahul & Gupta, Bhumika, 2024. "Technological paradoxes and artificial intelligence implementation in healthcare. An application of paradox theory," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    10. Goutier, Marc & Diebel, Christopher & Adam, Martin & Benlian, Alexander, 2024. "Proactive and Reactive Help from Intelligent Agents in Identity-Relevant Tasks," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 142985, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Mak, Brenda & Munakata, Toshinori, 2002. "Rule extraction from expert heuristics: A comparative study of rough sets with neural networks and ID3," European Journal of Operational Research, Elsevier, vol. 136(1), pages 212-229, January.
    12. Renaud, J. & Thibault, J. & Lanouette, R. & Kiss, L.N. & Zaras, K. & Fonteix, C., 2007. "Comparison of two multicriteria decision aid methods: Net Flow and Rough Set Methods in a high yield pulping process," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1418-1432, March.
    13. Tinglong Dai & Sridhar Tayur, 2022. "Designing AI‐augmented healthcare delivery systems for physician buy‐in and patient acceptance," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4443-4451, December.
    14. Stefan Feuerriegel & Mateusz Dolata & Gerhard Schwabe, 2020. "Fair AI," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(4), pages 379-384, August.
    15. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    16. Basile, Luigi Jesus & Carbonara, Nunzia & Pellegrino, Roberta & Panniello, Umberto, 2023. "Business intelligence in the healthcare industry: The utilization of a data-driven approach to support clinical decision making," Technovation, Elsevier, vol. 120(C).
    17. Bouyssou, Denis & Marchant, Thierry, 2007. "An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories," European Journal of Operational Research, Elsevier, vol. 178(1), pages 246-276, April.
    18. Nijkamp, Peter & Poot, Jacques, 2015. "Cultural Diversity: A Matter of Measurement," IZA Discussion Papers 8782, Institute of Labor Economics (IZA).
    19. Azam, Nouman & Zhang, Yan & Yao, JingTao, 2017. "Evaluation functions and decision conditions of three-way decisions with game-theoretic rough sets," European Journal of Operational Research, Elsevier, vol. 261(2), pages 704-714.
    20. Maurizio d’Amato, 2007. "Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies," International Real Estate Review, Global Social Science Institute, vol. 10(2), pages 42-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:3:p:1123-1138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.