IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i2p629-641.html
   My bibliography  Save this article

Automated feeder routing for underground electricity distribution networks based on aerial images

Author

Listed:
  • Ameling, Justus
  • Gust, Gunther

Abstract

The process towards a carbon-neutral society requires a substantial amount of investment into electricity distribution networks for integrating more sustainable technologies such as photovoltaic systems, electric vehicles, heat pumps, and others. In order to execute the large number of network expansion measures associated with this effort, strategic and operational planning of distribution networks benefit from higher degrees of automation. A key component in these planning processes is the routing of feeder segments, i.e., the task of finding feasible and cost-efficient paths for underground power lines between two geographic locations, such as residential buildings and transformer stations. In this paper, we present FEEDAIR, a novel and innovative approach to automate feeder routing based exclusively on aerial images. FEEDAIR integrates deep neural networks, which encode geoinformation from aerial images, and A* search, which identifies effective feeder routes based on this encoding. We train and evaluate FEEDAIR using a large data set of more than 7000 real-world electricity distribution network feeder segments. Thereby, we compare FEEDAIR to state-of-the-art approaches from related work and find that the feeder segments generated by FEEDAIR are on par or superior with regard to several characteristics and metrics. FEEDAIR achieves this performance by relying exclusively on aerial images, whereas competing approaches require data on geocoded land cover and estimated construction cost, which is not as widely available and is frequently based on potentially subjective expert opinion.

Suggested Citation

  • Ameling, Justus & Gust, Gunther, 2024. "Automated feeder routing for underground electricity distribution networks based on aerial images," European Journal of Operational Research, Elsevier, vol. 318(2), pages 629-641.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:629-641
    DOI: 10.1016/j.ejor.2024.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724003941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Herfort & Sven Lautenbach & João Porto de Albuquerque & Jennings Anderson & Alexander Zipf, 2023. "A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Gust, Gunther & Schlüter, Alexander & Feuerriegel, Stefan & Úbeda, Ignacio & Lee, Jonathan T. & Neumann, Dirk, 2024. "Designing electricity distribution networks: The impact of demand coincidence," European Journal of Operational Research, Elsevier, vol. 315(1), pages 271-288.
    3. Wilson Pavón & Esteban Inga & Silvio Simani, 2019. "Optimal Routing an Ungrounded Electrical Distribution System Based on Heuristic Method with Micro Grids Integration," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    4. Alex Valenzuela & Iván Montalvo & Esteban Inga, 2019. "A Decision-Making Tool for Electric Distribution Network Planning Based on Heuristics and Georeferenced Data," Energies, MDPI, vol. 12(21), pages 1-18, October.
    5. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    6. Avella, Pasquale & Villacci, Domenico & Sforza, Antonio, 2005. "A Steiner arborescence model for the feeder reconfiguration in electric distribution networks," European Journal of Operational Research, Elsevier, vol. 164(2), pages 505-509, July.
    7. Alex Valenzuela & Esteban Inga & Silvio Simani, 2019. "Planning of a Resilient Underground Distribution Network Using Georeferenced Data," Energies, MDPI, vol. 12(4), pages 1-20, February.
    8. Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edy Quintana & Esteban Inga, 2022. "Optimal Reconfiguration of Electrical Distribution System Using Heuristic Methods with Geopositioning Constraints," Energies, MDPI, vol. 15(15), pages 1-20, July.
    2. Alex Guamán & Alex Valenzuela, 2021. "Distribution Network Reconfiguration Applied to Multiple Faulty Branches Based on Spanning Tree and Genetic Algorithms," Energies, MDPI, vol. 14(20), pages 1-16, October.
    3. Alex Valenzuela & Silvio Simani & Esteban Inga, 2021. "Automatic Overcurrent Protection Coordination after Distribution Network Reconfiguration Based on Peer-To-Peer Communication," Energies, MDPI, vol. 14(11), pages 1-22, June.
    4. Alex Valenzuela & Iván Montalvo & Esteban Inga, 2019. "A Decision-Making Tool for Electric Distribution Network Planning Based on Heuristics and Georeferenced Data," Energies, MDPI, vol. 12(21), pages 1-18, October.
    5. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    6. Stefan Feuerriegel & Mateusz Dolata & Gerhard Schwabe, 2020. "Fair AI," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(4), pages 379-384, August.
    7. Rossi, André & Aubry, Alexis & Jacomino, Mireille, 2012. "Connectivity-and-hop-constrained design of electricity distribution networks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 48-57.
    8. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    10. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    11. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    12. Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
    13. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    14. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    15. repec:iim:iimawp:14638 is not listed on IDEAS
    16. Bhattacharya, Sourabh & Govindan, Kannan & Ghosh Dastidar, Surajit & Sharma, Preeti, 2024. "Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    17. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    18. Tian, Shuai & Yang, Guoqiang & Du, Sihong & Zhuang, Dian & Zhu, Ke & Zhou, Xin & Jin, Xing & Ye, Yu & Li, Peixian & Shi, Xing, 2024. "An innovative method for evaluating the urban roof photovoltaic potential based on open-source satellite images," Renewable Energy, Elsevier, vol. 224(C).
    19. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    20. Garcia Marrero, Luis Enrique & Arzola Ruíz, José, 2021. "Web-based tool for the decision making in photovoltaic/wind farms planning with multiple objectives," Renewable Energy, Elsevier, vol. 179(C), pages 2224-2234.
    21. Xia, Liang & Chan, Ming-yin & Qu, Minglu & Xu, Xiangguo & Deng, Shiming, 2011. "A fundamental study on the optimal/near-optimal shape of a network for energy distribution," Energy, Elsevier, vol. 36(11), pages 6471-6478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:629-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.